
Personal)use)of)this)material)is)permitted.)Permission)from)IEEE)must)
be)obtained)for)all)other)uses,)in)any)current)or)future)media,)
including)reprinting/republishing)this)material)for)advertising)or)
promotional)purposes,)creating)new)collective)works,)for)resale)or)
redistribution)to)servers)or)lists,)or)reuse)of)any)copyrighted)
component)of)this)work)in)other)works.)
)

Development of a Cyber-Physical System for an
Autonomous Indoor Transportation Service

Matthias Dziubany⇤‡, Lars Creutz⇤‡, Sam Kopp⇤, Jens Schneider⇤,
Anke Schmeink† and Guido Dartmann⇤

⇤Institute for Software Systems (ISS), Trier University of Applied Sciences,
Birkenfeld, Germany

Email: {m.dziubany, l.creutz}@umwelt-campus.de
†ISEK Research and Teaching Area, RWTH Aachen University, Aachen, Germany

‡These authors contributed equally to this work

Abstract—One of the key features of industry 4.0 is the

automation and optimization of transportation tasks. Especially

autonomous guided vehicles meet the required high flexibility

of future enterprises. In this paper, a concept of an autonomous

indoor post service is proposed. The whole cyber-physical system

from the autonomous vehicle, which is equipped with a Lidar

sensor and programmed, using a real world automotive frame-

work, over the secure communication design, to the dynamic

time-critical decision and routing optimization is explained.

I. INTRODUCTION

The development of cyber-physical systems (CPS) is a very
complex task and requires expertise in various domains. Espe-
cially the design of accurate interactions and synchronisation
between the different system components is challenging. With
the description of an autonomous indoor post service, this
paper provides a detailed concept for the implementation of
a secure CPS-based transportation system. Since the aim of
the paper is to give a complete overview of the components
and their secure interaction, only the basics of the components
are described. The overall project with extended autonomous
driving functions and vehicle constructions will serve as a
demonstrator of flexible autonomous transportation systems.
In our post service, users can order an autonomous vehicle,
that picks up mail at their office and then delivers it to another
office within the same building. The pickup location s, pickup
time window [a, b] and destination d is specified via a web app
by the user. After the system decides to accept the request, a
self-imposed delivery time window [a0, b0] with certain length
l is assigned to the receiver.
The cyber-physical system can be divided into user, server,
optimizer, web app and autonomous guided vehicle (AGV).
Requests are created in the user component via a web interface
and sent to the server. The server takes care of the whole com-
munication, like the exchange of vehicle status information,
triggering the optimizer, which acts as decisional component,
and sending the actual destination to the vehicle. The four
components and their interactions are briefly illustrated in
Figure 1.
After giving some related literature examples in Section 2, the
overall system, including the communication, is explained in
detail in Section 3. In Section 4, the decision optimization

Fig. 1. Components of the cyber-physical system and their communication.

is described. Localization and navigation of the autonomous
vehicle can be found in Section 5. At last, the paper is
concluded and some further ideas are given.

II. RELATED WORKS

The automated transportation within buildings is a highly
researched topic. The literature ranges from restrictive con-
veyor belts [1], over stacker cranes [2], to flexible automated
guided vehicles [3]. All transportation methods advance from
CPS implementations, as they enable monitoring, interaction
with other components and adaption to the production process
[4]. In order to recognise faults, the authors of [1] propose to
monitor a roller of a conveyor belt, which provides information
like rotation speed, bearing temperature and contact pressure.
In [5] and [6], the online scheduling and routing of stacker
cranes or monorail systems is studied.
In contrast to conveyor belts and stacker cranes, AGV are
much more flexible in transportation and can therefore per-
fectly adapt to changes of the production process [7]. However,
the employment of AGVs is technically more challenging,
since localisation and navigation is required. The Oregon Insti-
tute of Technology implemented robots, that deliver materials
to a series of working stations and are tracked by a ceiling-
mounted camera [7]. In [8], a Robotic delivery service in
combined outdoor-indoor environments is researched. A fur-
ther practical implementation of an autonomous robotic system
for transportation can be found in [9]. Beside navigation and
localisation, the coordination of a fleet of AGVs [3] and the
integration of IoT devices [10] are researched in autonomous
management systems.

Fig. 2. Actions in an post service.

Fig. 3. State machine of the AGV.

III. DESCRIPTION OF THE OVERALL SYSTEM AND
COMMUNICATION DESIGN

There is much literature stating the requirements of CPS
[11], [12]. However, their implementation in practice is often
not explained [3]. Therefore, we give a detailed description
of the overall system and communication design, enabling a
reliable, autonomous post service.
An example of an operating post service with corresponding
actions is illustrated in Figure 2. There, user A requests a
transport from his location to user C. The optimizer accepts
this request and sends a delivery time window to user C. After
the AGV picked up the letter of user A, a new transportation
request from user B to user A gets known to the system. Since
the optimizer decides to also accept this request, a delivery
time window is sent to user A. Finally, the AGV performs the
actions, depicted in Figure 2, following the state machine in
Figure 3.
Before we describe how the communication and optimiza-
tion work, we briefly introduce the network environment,
the system lives in. The AGV uses the university’s Wi-Fi
network eduroam to communicate with the server and is
therefore only able to send requests to a specific set of ports.
Other private ports of the network are used to send control
instructions to the server. Lastly, some local ports, which are
used for communicating with the database and the optimizer,
are entirely filtered. An overview is given in Table 1.
The web app, that hosts the post services for our users, forces
HTTPS connections, which offers end-to-end encryption for
the regular user communication. The remaining parts use raw
TCP sockets for communication. To prevent attacks, we use a

Ports (TCP) Service Accessible by

80/443 HTTP/HTTPS Entire network
8000 AGV state updates Entire network
7777 AGV control Institute subnet
7000 Optimizer communication Local
3306 Standard MySQL Port Local

TABLE I
OVERVIEW OF THE SERVICES, THEIR CORRESPONDING TCP PORT AND

THEIR ACCESS LEVEL

thin cryptographic layer, which is part of the communication
protocol. We also use public key encryption, based on the
elliptic curve secp256r1 [13]. An address inside the system
consists of a private and a public key. The public key is
exchanged between the components and used to encrypt
messages for the intended receiver. The private key is used
for signing and decrypting. Our server backend is mainly
written in C++, therefore we use the Crypto++1 library to
handle any form of elliptic curve cryptography. Any non-local
communication must comply with the protocol, to be able to
successfully interact with the server. Before we describe the
message format, the basic protocol definition contains:

1) Accept a connection on TCP port 8000 and read the
fingerprint of the caller’s public key.

2) Generate a random nonce, encrypt it under the known
public key and write it to the socket. Using a nonce
on each synchronous connection prevents replay-attacks
[14].

3) Read until the defined message delimiter or until the
used buffer is full. Using a size limit on the buffer
prevents any sort of overflow attack on the exposed port,
which could cause the application to crash [15].

4) Decrypt the buffer that contains information about the
AGV state update and the corresponding signature.

5) Check the signature by testing for all available client
public keys.

6) If the signature is correct, parse the AGV message and
handle the request.

The server’s response, also a predefined message type, will be
signed and encrypted before responding to the exposed raw
socket.
All exchanged messages are defined using Google proto-
col buffers2 (protobuf), serialized as string objects and hex-
encoded afterwards. We choose to use an additional layer
of conversion, because the encrypted messages might contain
some unsupported characters. A regular state update of the
AGV would build the data to be sent like the following:

1) Create the actual state update
2) Get the nonce and update the state update
3) Serialize the message
4) Hex-encode serialized message
5) Sign the hex-encoded message

1Crypto++ R� Library 8.2, https://www.cryptopp.com - Accessed 02-26-
2020

2Google Protocol Buffers, https://developers.google.com/protocol-buffers -
Accessed 02-26-2020

Fig. 4. An example for one hallway with three offices A,B,C and one transport request from A to C with pickup time window [0,2]. The lower indices of the
nodes depict the direction (u=up,d=down) and the upper ones the time. All arcs, except the arc from sA�C to s0A�C , have zero costs. After the optimization
problem was solved considering the request the first time, the self-imposed delivery time window is set.

The signature and message are packed into a protobuf object
afterwards, encrypted by using the server’s public key and sent
in hex-encoded format via the TCP socket, under the sign-
then-encrypt principle, which is sufficient for our use case,
because of the synchronous communication and the inclusion
of a random nonce [16]. A key feature, besides the design and
usability of the components, was to keep the exchanged mes-
sages as slim and secure as possible. An average conversation
between server and AGV results in approximately 1,2kb of
data, transferred over the TCP stream.

IV. DECISION OPTIMIZATION

As most requests in a post service come in spontaneous,
online optimization is necessary for decision-making. In short
time, our algorithm does not only decide, which new request to
accept or to deny, but it further assigns a self-imposed delivery
time window to the receiver. Literature about self-imposed
time windows can be found in [17]. Since we have only
one vehicle in operation, and the corresponding graph of our
building, on which routing takes place, is very small, we use
exact IP solutions in our online heuristic. In more detail, the
time window assignment and routing problem is formulated
as a multicommodity-coupled flow problem in time-expanded
networks and solved optimally by Gurobi3 after each server
call. An introduction to multicommodity-coupled flows can be
found in [18].
Time-expanded networks are perfectly suited to capture the
service time and the turning time of the vehicle. Further, the
assignment of time windows can be accomplished. As we want
to give an overview over the whole CPS, we do not explain
the construction of the time-expanded network in detail, rather
we give an example for one hallway with three offices and one
request in Figure 4. There, the time to drive from one office to
the next office is one, the service time is two and the turning
time is one. In order to maximize the number of accepted
requests, we put costs of minus one on the arc from sA�C to
s0A�C and give all other arcs zero cost.

3Gurobi, https://www.gurobi.com - Accessed 02-26-2020

V. AUTONOMOUS GUIDED VEHICLE

Autonomous driving in an indoor environment requires at
least localisation and navigation. That is why we focus on
these two problems. Further desirable properties, like obstacle
avoidance and trajectory coordination of a fleet of AGVs
can be found in [19]. The vehicle4 for the transport service,
described here, is a 1:8 scale electric model car, which features
a high-torque, brushless engine and is controlled with cruise
control. It is also equipped with a variety of sensors to perceive
its surroundings, such as front-facing almost 180-degree Lidar
and fisheye camera, ultrasonic sensors at its sides and back,
rear view camera and wheel encoders. The sensor outputs of
the Lidar, fisheye camera and the ultrasonic sensors can be
seen in Figure 5.

The driving functions are implemented using ADTF (Auto-
motive Data and Time-triggered Framework)5. This software
enables the time-based processing of several data streams to
generate driving functions.

A. Localization

Localization is imperative for autonomous driving, as well
as routing and scheduling. Since every localization method,
like Wifi-based [20], sound-based [21] and vision-based [3]
has its drawbacks, the simultaneous usage of different meth-
ods is reasonable. The combination of relative and absolute
position systems, like in [22], is also followed by us. Blue-
tooth beacons can be used to correct the cumulative errors
of wheel encoders, emerged by limited encoder resolution,
uneven floors, slipping wheels etc. Since we have only one
vehicle in operation, we use Two-Way-Ranging (TWR), where
a request is continuously sent to the Bluetooth beacons and the
corresponding response time is used to determine the distance
of the beacons to the vehicle.

4The vehicle was manufactured by Digitalwerk GmbH
https://www.digitalwerk.net/adas-modellauto/ - Accessed 04-25-2020

5https://www.digitalwerk.net/adtf/ - Accessed 04-25-2020

Fig. 5. Left the output of the fisheye camera and right the output of the Lidar and the ultrasonic sensors using the basic software of the model car 6

Another possible method could be using particle filters based
on the Lidar data like proposed in [23].

B. Navigation

The indoor environment, which our vehicle is supposed
to navigate in, consists mainly of long straight corridors, so
following a wall is the core of the car’s driving functionality.
We have implemented this functionality based on an algorithm
proposed by Karl Bayer [24]. Our modified implementation
uses a linear least-squares-fitting (LLSF) function, to estimate
the position of a wall w̃, based on a random subset S of the 2D
point cloud L, generated by the Lidar. Only if more elements
of S than a specified proportion p have distance smaller than a
specified threshold t to the fitted line, and are therefore called
inliers Sinliers, w̃ is preserved. If w̃ is already known, it is
checked against a new subset S0 of L. The new S0 is taken
from the same section of the Lidar sample as the previous one.
This increases the probability of recognizing an already known
w̃. Only if w̃ is no longer recognized, S to find a new w̃ is
generated from a new random section of L. This procedure
is repeated, until a w̃ is found or the maximum number of
iterations imax is reached. Subsequently, a second LLSF can be
performed, this time, only with the points classified as inliers
Sinliers, to obtain a more accurate w̃. Since the search for a
new w̃ is more computing-intensive than updating an already-
known w̃, we always try to update an already-known w̃ first.
Only if the known w̃ cannot be confirmed by the inlier check
of S, we create a new S0 and search for a new w̃ therein.
We then use the following controller function to compute a
steering value !, in order to hold a predefined distance �,
based on the angle ✓̃ and distance �̃ to w̃:

6ADTF Basic Software https://git.digitalwerk.net/adas-model-car/adtf-
basic-software - Accessed 04-25-2020

! = k1 · ✓̃ + k2 · (�̃ � �),

where k1 and k2 are control parameters. This procedure is
shown in Algorithm 1, as a pseudo code (based on [24]).

In addition, the Lidar points are also used for an emergency
braking function and for detecting and bypassing obstacles.
This basic functionality is already sufficient to complete sim-
ple driving functions in our test environment.

VI. CONCLUSION AND CURRENT STATUS OF THE PROJECT

We have presented an overview of our ongoing work of
implementing an autonomous post service. The following list
shows the current status of the project:

• the server and the optimizer are implemented and tested,
based on simulation data

• the AGV can perform simple driving tasks, like following
a wall and turning as well as bypassing obstacles

• the indoor localization and the navigation to a given
destination is in progress.

In the future, we want to use the fisheye camera and implement
further autonomous driving algorithms, like obstacle avoidance
and intention recognition.

ACKNOWLEDGMENT

This work has been funded by the Federal Ministry of
Transport and Digital Infrastructure (BMVI) within the fund-
ing guideline ”Automated and Connected Driving” under the
grant number 16AVF2134C.

REFERENCES

[1] G. Fedorko. ”Implementation of Industry 4.0 in the belt conveyor trans-
port”.

[2] X. Sun, Z. Ma, Z. Wang and C. Ai. ”The development of stereoscopic
warehouse stacker control system based on motion controller”. MATEC
Web of Conferences, 139, 00038, 2017.

Algorithm 1 Wall Following
Input: Vector of 2d Lidar points L = {l1, . . . , ln}, �, k1, k2
Output: Steering value !

1: if wall known= 0 then

2: i 0
3: while i < imax and wall known= 0 do

4: i i+ 1
5: S = {lmin, . . . , lmax} random excerpt(L)
6: w̃ LeastLinearSquaresFit(S)
7: Sinliers GetInliers(w̃, S, t)
8: if |Sinliers|/(max�min) > p then

9: wall known 1
10: end if

11: end while

12: w̃ LeastLinearSquaresFit(Sinliers)
13: else

14: Sinliers GetInliers(w̃, {lmin, . . . , lmax}, t)
15: if |Sinliers|/(max�min) > p then

16: w̃ LeastLinearSquaresFit(Sinliers)
17: else

18: wall known 0
19: end if

20: end if

21: if wall known= 1 then

22: ✓̃ angle(position(AGV), w̃)
23: �̃ offset(position(AGV), w̃)
24: ! k1 · ✓̃ + k2 · (�̃ � �)
25: return !
26: end if

[3] R. Van Parys, M. Verbandt, M. Kotze, P. Coppens, J. Swevers, H. Bruyn-
inckx, J. Philips and G. Pipeleers. ”Distributed Coordination, Transporta-
tion & Localisation in Industry 4.0”. 2018.

[4] Y. Cohen, M. Faccio, F. Pilati and X. Yao. ”Design and management of
digital manufacturing and assembly systems in the Industry 4.0 era”. The
International Journal of Advanced Manufacturing Technology, 2019.

[5] Q. Gao and X. Lu. ”The complexity and on-line algorithm for automated
storage and retrieval system with stacker cranes on one rail”. Journal of
Systems Science and Complexity, 29, 2016.

[6] K. Gutenschwager, C. Niklaus, S. Voss. ”Dispatching of an Electric
Monorail System: Applying Metaheuristics to an Online Pickup and
Delivery Problem”. Transportation Science, 38, 2004.

[7] D. Culler and J. Long. ”A Prototype Smart Materials Warehouse Ap-
plication Implemented Using Custom Mobile Robots and Open Source
Vision Technology Developed Using EmguCV”. Procedia Manufacturing,
5, 2016.

[8] R. Limosani, R. Esposito, A. Manzi, G. Teti, F. Cavallo and P. Dario.
”Robotic delivery service in combined outdoor-indoor environments:
Technical analysis and user evaluation”. Robotics and Autonomous Sys-
tems, 103, 2018.

[9] A. Bouguerra, H. Andreasson, A. Lilienthal, B. Astrand and T. Rognvalds-
son. ”An Autonomous Robotic System for Load Transportatio”. IEEE
Conference on Emerging Technologies and Factory Automation, 2009.

[10] F. Yao, A. Keller, M. Ahmad, B. Ahmad, R. Harrison and A. Colombo.
”Optimizing the Scheduling of Autonomous Guided Vehicle in a Manu-
facturing Process”. 2018.

[11] M. Sadiku, Y. Wang, S. Cui and S. Musa. ”Cyber-Physical Systems: A
Literature Review”. European Scientific Journal, 13, 2017.

[12] A. Darwish and A. E. Hassanien. ”Cyber physical systems design,
methodology, and integration: the current status and future outlook”.
Journal of Ambient Intelligence and Humanized Computing, 2017.

[13] S. Turner et al.. Elliptic Curve Cryptography Subject Public Key
Information, https://www.ietf.org/rfc/rfc5480.txt, 2009

[14] G.M. Køien. ”A Brief Survey of Nonces and Nonce Usage”. SE-
CURWARE International Conference on Emerging Security Information,
Systems and Technologies. 2015

[15] C. Cowan, P. Wagle, C. Pu, S. Beattie and J. Walpole. ”Buffer overflows:
attacks and defenses for the vulnerability of the decade”. Foundations of
Intrusion Tolerant Systems, 2003 [Organically Assured and Survivable
Information Systems].227-237. 2003

[16] D. Davis. ”Defective Sign Encrypt in S/MIME, PKCS7, MOSS, PEM,
PGP, and XML”. USENIX Annual Technical Conference. 2001.

[17] O. Jabali, R. Leus, T. Woensel and T. Kok. “Self-imposed time windows
in vehicle routing problems”. OR Spectrum, 37, 2, 2010.

[18] S. Bsaybes, A. Quilliot and A. Wagler. “Fleet management for au-
tonomous vehicles using multicommodity coupled flows in time-expanded
network”. 17th International Symposium on Experimental Algorithms
(SEA 2018), Leibniz International Proceedings in Informatics (LIPIcs),
103, 2018.

[19] D. Herrero-Perez and Humberto Barberá. ”Decentralized coordination
of automated guided vehicles”. 2008.

[20] H. Blunck, T.S. Prentow, S. Temme, A. Thom and J. Vahrenhold.
”Deviation Maps for Robust and Informed Indoor Positioning Services”.
SIGSPATIAL Special, 2017.

[21] M. Dziubany, R. Machhamer, H. Laux, A. Schmeink, K.-U. Gollmer,
G. Burger and G. Dartmann. “Machine learning based indoor localization
using a representative k-nearest-neighbor classifier on a low-cost iot-
hardware”. 26th European Signal Processing Conference (EUSIPCO),
IEEE, 2018.

[22] HS. Kim, W. Seo and K. Baek. ”Indoor Positioning System Using
Magnetic Field Map Navigation and an Encoder System”. Sensors, 17,
651, 2017.

[23] Xiao, Yue and Ou, Yongsheng and Feng, Wei. ”Localization of indoor
robot based on particle filter with EKF proposal distribution”. 2017 IEEE
international conference on cybernetics and intelligent systems (CIS)
and IEEE conference on robotics, automation and mechatronics (RAM),
IEEE, 2017.

[24] K. Bayer. Wall Following for Autonomous Navigation. 2012.

