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Abstract. This research investigates strategies to enhance the energy
efficiency of artificial intelligence (AI) algorithms, focusing on three piv-
otal domains: time series analysis, semantic AI, and deep learning (DL).
Through a comprehensive examination of variables such as data size and
the impact of hyper-parameter adjustments, the study aims to uncover
nuanced insights into the relationship between algorithmic performance
and energy consumption. By exploring the unique challenges and oppor-
tunities within each use case, this research provides valuable guidance
for practitioners seeking to optimize energy efficiency in AI applications.
The findings contribute to the ongoing discourse on sustainable AI de-
velopment, offering practical overview to balance computational power
with environmental considerations.
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1 Introduction

The rapid advancement of artificial intelligence (AI) has brought changes across
various sectors. However, the increasing computational demands of AI algorithms
pose significant energy efficiency challenges. Addressing these challenges is cru-
cial to ensure sustainable AI development. This research focuses on analysing
the resource and energy efficiency of AI algorithms, a key aspect of sustainable
AI. It targets three pivotal domains: time series analysis, semantic AI, and deep
learning (DL). Time series analysis is crucial in fields like finance and weather
forecasting, where AI can offer valuable insights. Each field offers distinct chal-
lenges and opportunities regarding energy efficiency. The goal of this research is
to offer a detailed understanding of how different factors interact and affect the
performance and energy efficiency of AI algorithms. We first conducted research
on the energy aspects of natural language processing (NLP) in semantic AI.
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Next, we examined energy consumption related to complex neural network op-
erations in DL. Finally, we focused on the computational demands of time series
analysis. A key part of the study is to explore how the size of datasets affects
energy efficiency, given that larger datasets generally demand more computa-
tional resources. The research also examines how changes in hyper-parameters,
like learning rate and batch size, can influence both algorithm performance and
energy consumption, aiming to make AI models more energy-efficient. We con-
ducted a study of the available literature to understand the relationship between
energy use and algorithm efficiency. This research contributes to the discussion
on sustainable AI by providing a practical view on balancing computing needs
and environmental concerns. The structure of this paper is outlined as follows:
Section 2 offers a review of relevant literature. The methodology and use case
design is detailed in Section 3. Section 4 focuses on the evaluation and discussion,
and the conclusions and the future work are provided in Section 5.

2 Related Work

In recent years, advancements in energy efficiency in the field of AI have focused
on reducing the significant energy consumption of AI models. Advances in Green
AI initiatives have been pivotal, emphasizing sustainable AI development by in-
tegrating energy-efficient practices in model training and deployment, thus bal-
ancing computational power with environmental considerations. Recent advance-
ments not only focus on reducing the energy footprint of DL models [1,2,3,4,5,6,7]
but also extend to optimizing semantic AI algorithms for better language under-
standing and enhancing time series models for more energy-efficient processing
in different applications. In this study, we delve into the often-overlooked in-
fluence of software on the energy usage and overall environmental footprint of
hardware systems. The rapidly growing field of AI, with a focus on machine
learning (ML) and DL, has sparked a keen interest in evaluating their energy
demands and ecological impacts during the training phase [8,9,5]. The assess-
ment of the carbon footprint of AI [9], measurement of the energy requirements
of AI systems [10], and evaluation of the efficiency of AI platforms such as
PyTorch and TensorFlow [11] present one of the important research studies.
Authors in [5] employ a life-cycle approach to estimate the carbon emissions
generated from training NLP models. Recent advancements in Green AI empha-
size the importance of energy-efficient ML where the contributions include the
study on the impact of data preprocessing and feature selection [12], exploration
of model optimization through weight pruning [13], and the discussion on Green
AI’s role in sustainable computing by Wang et al. [14]. In the field of energy-
and resource-efficient software, various methodologies have been developed to
assess the environmental sustainability of software products, as exemplified by
the research of Naumann et al. [15] and Mancebo et al. [16]. Our analysis places
special emphasis on energy consumption during the training and testing phases
of various usage scenarios, comparing them using the energy and resource con-
sumption metrics established by the authors in [17]. Recent advancements in
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time series analysis, especially regarding energy consumption, are key for effi-
cient resource management and environmental sustainability. Sentiment analysis
is a ML technique that interprets and classifies emotions expressed in text data,
often used to understand opinions in customer feedback, social media, and other
written sources. Recent research in sentiment analysis has explored the capabili-
ties of large language models (LLMs). Studies like Zhong et al. [18] compared the
zero-shot performance of LLMs with fine-tuned BERT models, while researchers
in [19] investigated ChatGPT’s proficiency in handling various sentiment analy-
sis tasks, including polarity shifts and sentiment inference. Deng et al. [20] delved
into fine-tuning a smaller model using a LLM to generate weak labels, achieving
performances comparable to supervised models. These studies indicate a grow-
ing interest in understanding LLMs’ effectiveness in sentiment analysis, but they
also highlight the need for more comprehensive evaluations across diverse tasks
and datasets. Recent study [21] introduces a new way to classify emotions in
text using spiking neural networks (SNNs) to enhance energy efficiency. To the
best of our knowledge, the investigation of energy efficiency in sentiment anal-
ysis tasks still remains a relatively untapped area in the field. Recent progress
in image classification, led by convolutional neural networks (CNNs) models like
ResNet [22] and VGG-16 [23], has significantly improved accuracy in various
domains.
In our study, we examined three different use-case scenarios, exploring into as-
pects such as the volume of data and the consequences of modifying hyper-
parameters. This approach enabled us to discover complex details about the
connection between the performance of algorithms and their energy consump-
tion. In our first sentiment analysis use case scenario, we specifically investigate
the energy efficiency of BERT models, examining how different data volumes and
batch sizes influence their energy consumption. This focused approach enables
us to understand the nuances of energy usage in these NLP models, ensuring
that they not only maintain high accuracy but also adhere to sustainable com-
putational practices. As a second use case scenario in our study, we extended our
analysis of resource and energy efficiency to encompass various epoch and batch
sizes while working with neural network models like ResNet [22], DenseNet [24],
MobileNet [25], Inception [26], VGG-16 [23] and VGG-19 [23] for image classifica-
tion. This approach allowed us to comprehensively assess how different training
configurations impact the energy and computational demands of these mod-
els. Our findings offer a detailed perspective on the balance between training
efficiency, model accuracy, and energy use, providing important guidance for en-
hancing neural network training in scenarios where energy efficiency is crucial.
Transitioning to our third scenario, we shift our focus to the extensive landscape
of sensor data. This case study involved analyzing time series data using tools
from sktime, a Python library for time series analysis [27], specifically the Ran-
dom Interval Spectral Ensemble (RISE), the KNeighbors Time Series Classifier
(kNNTime) and the Time Series Forest Classifier (TSFC). We aimed to evaluate
the accuracy of detecting fill levels, while also incorporating energy assessments
to determine the system’s energy efficiency.
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3 Methodology and Design

In this section, we outline the research questions we aim to address, describe
the practical experiment conducted as part of this research, which includes a de-
scription of the case study’s design, the experimental procedures employed, and
the methods used to analyze the collected results. We assess algorithm efficiency
by monitoring hardware usage and power consumption in the aforementioned
scenarios. For reference, we have prepared a comprehensive replication package,
which includes detailed system specifications, the scenarios explored, the data
recorded, and the results of our analyses. All these materials are accessible in
our Git repository https://gitlab.rlp.net/rgdsai/mfa.

3.1 Research Questions: AI Model Efficiency

In light of our research objectives, we structured our inquiry into the energy
consumption and efficiency of AI models, particularly in NLP and DL, through
the following research questions:

RQ1: How does batch size influence energy consumption and accuracy in
NLP model training? This research question aims to understand the relationship
between batch size during the fine-tuning phase of NLP models and its impact
on energy efficiency and model accuracy. By answering this, we intend to identify
optimal batch sizes that balance energy consumption with performance efficacy.

RQ2: What is the effect of training data size on the energy consumption
and accuracy of NLP models? We investigated the energy consumption and
accuracy of models by varying the proportion of the training data, exploring
how these metrics change with increasing data volumes. This seeks to determine
the optimal data size that ensures efficient energy use without compromising the
model’s accuracy.

RQ3: How do different DL architectures compare regarding energy consump-
tion and model performance? Focusing on architectures like DenseNet, ResNet,
VGG-16, VGG-19, and Inception, this question explores how the structural vari-
ances in these models affect their energy efficiency and overall performance. The
goal is to provide a comparative analysis that guides the selection of the most
energy-efficient model without sacrificing performance.

RQ4: In the context of time series approaches using sensor data, what is
the best configuration that exhibit the most energy-efficient processing? This
question extends the study to time series analysis, evaluating various AI model
scenarios on their energy efficiency when processing sensor data. The objective
is to identify models that offer an optimal balance between energy efficiency and
effective time series analysis.

By exploring these research questions, our study aims to provide meaningful
contributions into the energy-efficient implementation of AI systems, especially
in a time where the environmental impact of technology is of paramount concern.
The findings are expected to guide both practitioners and researchers in making
informed decisions about AI model selection and optimization for sustainable
usage.
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3.2 Data Aquisition

Our research embarks on a multifaceted exploration, traversing three distinct
scenarios. For our first use case scenario we used Stanford’s Large Movie Review
Dataset IMDB [28,29] that contains 50,000 movie reviews. Reviews are labeled
as 1 or 0 corresponding to positive or negative sentiment, respectively. A mini-
mal data preprocessing are done prior to tokenization as BERT was trained on
complete sentences. To effectively utilize pre-trained BERT, we must utilize the
library’s tokenizer due to BERT’s specific, fixed vocabulary and the tokenizer’s
unique handling of out-of-vocabulary words. Additionally, it’s essential to add
special tokens at the start and end of each sentence, standardize sentence length
through padding or truncation, and explicitly identify padding tokens using the
“attention mask”. The developed code supports sentiment analysis on a variety
of CSV datasets, making it adaptable to any text classification task, with the
ability to analyze textual data and assign sentiment labels, regardless of the
specific dataset’s structure or content.

In our vision use-case a simple webcam took pictures of a flowrack with
various number of bins in each lane. As the bins move forward after putting them
into a lane, it is possible to determine the number of bins from the backside of
the rack. The pictures of the whole rack were devided into smaller ones showing
only one separated lane, which can store a maximal number of tree bins. In
order to manage different lane sizes and camera angels the pictures of the lanes
were mathematically transformed to equal size. Fig. 1 (a) shows a picture of the
flowrack and the determined number of bins in each lane.

(a) (b)

Fig. 1. Demonstrators utilized in the experimental use case
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In our third application scenario, we developed a demonstrator for generating
time series data. It’s designed to determine the fill level of a small container
through acoustic sound waves, with the capability to differentiate between five
distinct levels of fill: 0%, 25%, 50%, 75%, and 100%. The construction of this
demonstrator involved the use of 3D printing to create a structure that houses
a central unit. This central unit incorporates an ESP32 [30] microcontroller,
equipped with three buttons and a display that shows the classified fill level.
Attached to this central unit are three lids, each fitted with a buzzer to generate
acoustic signals and a microphone for recording the corresponding time-series
data. The operational principle involves placing a lid over a container filled with
material. Upon pressing the corresponding button associated with that lid, a
sinusoidal sweep is emitted as an acoustic signal. The recording of this signal
commences before the emission of the sound to capture ambient noise for noise
reduction purposes and continues after the signal has ended to include sound
reflections. This process facilitates the approximate calculation of the room’s
impulse response, which is then transmitted to a Raspberry Pi via MQTT [31].
This Raspberry Pi is responsible for managing and storing the data. The impulse
response of the room, captured in this scenario, serves as time-series data and
forms the foundation for training the ML algorithms: RISE, kNNTime, and
TSFC. Fig. 1(b) illustrates the setup of the demonstrator, providing a visual
representation of its configuration and components.

3.3 Case Study Overview

In our first use case scenario, we conducted series of experiments specifically
focusing on text classification using a BERT model. We iterate through a pre-
determined number of experiments, adjusting the dataset and feature set sizes
based on specified percentages, to evaluate the impact on model performance.
The process includes data preprocessing, model training, and validation stages,
logging each step’s start and end times for energy performance tracking and
reproducibility. The different adjustments of the batch size (16 or 32) are used
during training to maintain a balance between gradient noise and memory effi-
ciency. The Adam optimizer with default hyperparameters was used in all scenar-
ios. Additionally, we emphasize memory management through explicit garbage
collection and system calls to clear RAM, ensuring efficient resource utilization
during the experiments. Our methodological framework involves a detailed com-
parison of energy consumption metrics such as mean power (W) and energy
usage (Wh), for the preprocessing and training phases, as well as for the GPU
utilization. By incrementally increasing dataset sizes from 10% to 100% of the
total volume, we could simulate different training intensities to observe their
impacts on energy efficiency and model performance. This approach allowed us
to capture a range of performance metrics, including processing times, CPU and
GPU usage percentages, RAM and GRAM usage, and GPU temperature.

In our study’s second use case scenario, we extended our analysis of resource
and energy efficiency by examining various epoch and batch sizes when working



Enhancing Energy Efficiency in AI 7

with neural network models like ResNet[23], DenseNet [25], MobileNet [26], In-
ception [27], VGG-16 [24], and VGG-19 [24] for image classification, enabling a
comprehensive assessment of the impact of different training configurations on
energy and computational demands.

In our third scenario, we explore the application of Edge AI to determine
container fill levels using acoustic analysis. Our analysis spans across distinct
settings, aiming to identify the most efficient combination for precise fill level
classification while optimizing energy consumption. We utilized three ML algo-
rithms: RISE, kNNTime, and TSFC. These were employed to adjust two key
parameters: sample length (the length of the room impulse response considered
by the models) and the number of estimators/neighbors. Analogous to the second
use case, we measured energy consumption using metrics such as mean power,
energy usage during training and testing phases, as well as training and testing
duration, CPU usage, and accuracy using the F1 score metric.

3.4 Tailored Hardware for Different Use Cases and Measurement
Methodology

For the semantic analysis and DL use-cases, we utilized a high-powered server
configuration, powered by an Intel Xeon W-2295 processor with 18 cores run-
ning at 3.0 GHz, paired with 131.56 GB of DDR4-2933 RAM. It features an
NVIDIA GeForce RTX 4090 24 GB GPU and is built on an ASUS WS C422
Pro/SE mainboard. This setup was specifically selected to optimize the process-
ing power and memory requirements needed for these complex tasks, ensuring
efficient and effective analysis. Conversely, for the time series analysis use-case,
we choose a standard PC configuration. The experiments were carried out on
a computer setup that included 4 GB of RAM, arranged in two modules of 2
GB each, and was driven by an Intel Core i5-650 processor. This system also
boasted a dual-storage configuration, combining a 500 GB hard disk drive (HDD)
for extensive storage capacity with a 250 GB solid-state drive (SSD) for rapid
data retrieval and system responsiveness. This choice reflects the comparatively
lower computational demands of time series analysis, which, while still requiring
precision and accuracy, can be effectively conducted on less powerful hardware.
This distinction in hardware choice between the use-cases allowed us to not only
tailor our computational resources to the specific needs of each task but also to
investigate the potential impacts of hardware capabilities on the efficiency and
outcomes of different types of data analysis.

The measurement methodology for AI-based method was described in pre-
vious work [32] and in context of AI methods in [33]. The measurements are
based on the methodology and guidelines outlined in the Green Software Mea-
surement Model [34]. Data aggregation is automated, with users logging process
start times, end times, and labels in a CSV file called the action log. A Stan-
dard Usage Scenario (SUS) outlines the basic workflow. Resource data, including
CPU and RAM usage, is recorded using the Linux performance reporting tool
collectl on a Linux Ubuntu system. Energy consumption data is obtained from
a power meter, requiring synchronization with the executing computer’s time.
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The accurate calculation of energy consumption for the process requires record-
ing the baseline consumption of the executing system through a corresponding
measurement, with the measured value adjusted accordingly, ideally conducted
for a duration comparable to that of the actual process.

4 Results and Discussion

To address our first research question (RQ1), we aim to explore the impact of
batch size on energy consumption and accuracy during the fine-tuning phase of
NLP model training. Our goal is to try to identify the optimal batch sizes that
balance energy efficiency with performance efficacy. We conducted a comprehen-
sive analysis by systematically varying batch sizes and measuring their effects on
energy consumption and accuracy for the BERT model across different dataset
sizes. Detailed performance metrics, including energy efficiency (measured in
Wh) and model accuracy (indicated by the F1 score) for two batch sizes (16 and
32), are presented in Table 1.

Table 1. Combined performance metrics for Bert model

Performance Metrics for Bert Model - Batch Size 16

Metric 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mean Power [W] 187.516 198.40 220.544 208.318 253.173 264.890 278.309 286.963 297.075 304.070
Time Preprocessing [s] 3.941 3.973 3.954 4.002 3.990 3.993 4.040 4.041 4.035 4.067

Time Train [s] 1.410 1.911 2.433 3.044 3.421 3.971 4.426 4.949 5.379 5.891
Time Test [s] 0.020 0.028 0.041 0.057 0.070 0.081 0.091 0.103 0.118 0.130

Energy Preprocessing [Wh] 0.080 0.075 0.073 0.103 0.076 0.074 0.073 0.074 0.074 0.079
Energy Train [Wh] 0.041 0.073 0.123 0.088 0.222 0.266 0.315 0.365 0.407 0.451
CPU Usage [%] 3.250 3.448 3.437 3.307 3.464 3.410 3.409 3.385 3.350 3.266
GPU Usage [%] 4.827 12.848 17.005 20.319 26.442 28.080 31.641 33.742 37.290 38.523
RAM Usage [%] 1.072 1.122 1.141 1.242 1.180 1.189 1.242 1.228 1.294 1.306
GRAM Usage [%] 12.338 12.329 12.630 12.399 12.490 12.488 12.492 12.548 12.595 12.582
GPU Temp [°C] 53.177 42.558 46.417 49.798 47.827 45.068 45.756 46.346 47.625 40.608

GPU Energy [Wh] 0.055 0.084 0.129 0.149 0.224 0.263 0.311 0.358 0.412 0.453
F1 Score 0.5 0.63 0.80 0.80 0.84 0.86 0.81 0.84 0.82 0.81

Performance Metrics for Bert Model - Batch Size 32

Metric 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mean Power [W] 197.94 201.840 219.91 183.181 256.350 263.929 277.332 448.520 300.924 312.802
Time Preprocessing [s] 3.923 3.940 3.964 3.988 4.020 4.015 3.994 4.016 4.042 4.062

Time Train [s] 1.253 1.560 1.921 2.463 2.581 2.873 3.246 3.282 3.906 4.208
Time Test [s] 0.016 0.027 0.039 0.050 0.064 0.074 0.085 0.204 0.108 0.122

Energy Preprocessing [Wh] 0.076 0.071 0.078 0.117 0.077 0.076 0.074 0.083 0.078 0.077
Energy Train [Wh] 0.047 0.075 0.104 0.011 0.227 0.225 0.264 0.318 0.351 0.362
CPU Usage [%] 3.197 3.331 3.417 3.374 3.393 3.518 3.449 3.678 3.417 3.408
GPU Usage [%] 6.553 7.482 13.658 17.744 23.481 26.364 29.937 74.155 35.123 37.605
RAM Usage [%] 1.135 1.230 1.178 1.374 1.290 1.281 1.329 1.563 1.347 1.333
GRAM Usage [%] 17.160 17.404 17.315 17.198 17.442 17.499 17.442 18.708 17.630 17.641
GPU Temp [°C] 54.491 42.318 46.500 47.243 47.956 48.306 47.994 64.481 50.425 49.755

GPU Energy [Wh] 0.055 0.059 0.088 0.113 0.169 0.198 0.237 9.247 0.316 0.346
F1 Score 0.5 0.45 0.68 0.69 0.79 0.83 0.80 0.84 0.82 0.81

The relationships between batch size, mean power consumption and F1 score
are presented in Fig. 2 (a). Our final insights from this examination of batch
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(a) (b)

Fig. 2. Performance metrics and resource utilization for BERT models

size impacts on BERT model training underscore the intricate balance between
computational resource utilization and model effectiveness. Our key findings are
outlined below:

– We found a direct correlation between batch size and energy consumption.
Larger batch sizes generally resulted in higher mean power consumption but
also offered more efficient processing in terms of energy per data point pro-
cessed, particularly with larger datasets. The analysis revealed that batch
sizes of 32 often resulted in shorter training and preprocessing times com-
pared to a batch size of 16, especially as the dataset size increased.

– Optimal model performance was observed at varying dataset percentages,
highlighting the importance of selecting batch size based on the specific
context of the model’s application. The F1 score analysis indicated that
while larger batch sizes can enhance training efficiency, they do not always
correlate with improved model accuracy.

– Batch size 32 (orange line in Fig. 2b) typically exhibits lower or comparable
GPU usage compared to batch size 16 for most dataset sizes, except for a
significant spike at the 80% data size. This suggests that using a larger batch
size can be more GPU efficient for certain dataset sizes but may encounter
inefficiencies or bottlenecks at specific points (like 80%). We found that as the
dataset size increases, so does the energy required for training, particularly
evident in smaller batch sizes.

– Identifying the optimal batch size for NLP model training involves balancing
energy efficiency, training speed, and model accuracy. Our findings suggest
that while larger batch sizes may enhance computational efficiency, they
require careful consideration of the trade-offs involved, particularly regarding
model performance and hardware limitations.

Our investigation into the effects of batch size on the energy consumption
and accuracy of NLP model training with a specific focus on the BERT model
provides critical insights for optimizing training processes. These insights em-
phasize the necessity of a nuanced approach to batch size selection, tailored to
the specific goals of energy efficiency, computational resource management, and
model accuracy.
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In addressing our second research question (RQ2), we investigate the effects
of scaling training dataset size on the energy consumption and accuracy of a
BERT model. This study aims to elucidate the dual impact of dataset size on
model efficiency—quantified through energy requirements—and on model perfor-
mance, as gauged by the F1 score. To systematically explore these relationships,
we employ Pearson correlation analysis. This method allows us to quantitatively
assess the linear correlation between training data size and two key outcomes:
the energy consumed throughout the training phase and the accuracy of the
model. Our analysis revealed significant relationships for a batch size of 16:

– We found a strong positive correlation of 0.98 between the training data size
and the energy consumed during training, highlighting a substantial increase
in energy requirements as dataset size expands.

– We found a moderate positive link with a correlation of about 0.70, between
the size of the training data and the F1 score. This means that making the
dataset larger tends to improve how accurate the model is, but not as much
as it increases the energy needed for training.

From our analysis, we also found the following correlations for a batch size of
32:

– While a strong positive correlation of 0.93 was observed between the training
data size and the energy consumed during training for batch size 32, this is
slightly lower than the correlation noted for batch size 16, suggesting that
while energy demands still increase with larger datasets, the rate of increase
may be less steep for larger batch sizes.

– A strong positive correlation (0.85) between the training data size and the
F1 score for batch size 32 was found, indicating a more distinct improvement
in model accuracy with larger training datasets, more so than observed with
batch size 16.

Our third research question (RQ3) focused on unraveling the intricate bal-
ance between energy consumption and model performance across prevalent DL
architectures. This inquiry aimed to dissect how structural variations in mod-
els such as DenseNet, ResNet, VGG-16, VGG-19, and Inception influence their
operational efficiency and effectiveness. We thoroughly compiled data reflect-
ing each model’s energy usage during training and testing phases, accompanied
by their performance metrics, primarily measured through F1 scores. Addition-
ally, we considered the computational time and resource utilization, to paint a
comprehensive picture of each model’s energy profile as it is shown in Table
2. The energy consumption across different models and the trade-off between
global energy consumption and the best F1 score are depicted in Figures 3 and
4, respectively.

Through this comparative analysis, our goal was to offer practical guidance
for choosing the most energy-efficient model without sacrificing performance. In
our analysis of energy efficiency across various DL architectures, we discovered
that each model exhibits its own optimal configuration that harmonizes energy
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Table 2. Comparison of algorithm performance and energy consumption - scenario
image classification

Model Batch Epoch Mean Time[s] Energy[Wh] CPU[%] GPU[%] RAM [%] GRAM[%] GPU[C◦] GPU[Wh] F1
Name Size Numb. Power[W] Train Test Train Test Usage Usage Usage Usage Temp. Energy Score(%)

DenseNet

32 9 271.06 104.7 74.35 6.39 1.74 11.85 40.26 1.40 21.17 44.52 5.92 99.65
16 9 224.61 165.10 76.44 6.09 1.73 12.84 31.17 1.37 12.25 39.81 5.12 99.54
32 5 245.50 53.66 73.80 3.20 1.67 9.76 33.71 1.40 21.24 40.90 3.30 99.34
16 5 159.2 83.10 76.15 3.07 1.73 10.75 28.16 1.40 12.24 40.30 3.00 98.80

ResNet

32 9 282.32 46.65 14.76 2.58 0.40 26.77 34.64 0.72 6.69 44.86 1.77 99.09
16 9 279.14 52.27 14.97 2.82 0.39 28.11 34.03 0.77 4.05 44.59 1.83 99.74
32 5 265.14 24.70 15.04 1.33 0.40 22.77 31.55 0.80 6.64 49.00 1.02 99.80
16 5 263.88 27.32 14.75 1.43 0.40 24.16 31.59 0.79 4.04 48.69 1.04 99.76

MobileNet

32 9 268.86 54.83 30.00 3.08 0.70 20.82 32.84 2.00 12.91 45.47 2.39 99.77
16 9 232.04 72.46 30.65 2.85 0.71 22.25 26.82 2.06 7.74 44.61 2.11 99.56
32 5 244.09 28.63 30.52 1.54 0.70 16.67 27.20 2.09 12.66 43.11 1.32 99.35
16 5 226.24 36.00 29.65 1.44 0.70 18.43 24.30 2.11 7.74 47.77 1.24 99.82

Inception

32 9 286.27 138.85 53.84 7.72 1.82 19.64 43.25 0.85 18.81 47.20 6.95 99.82
16 9 270.72 165.77 54.70 8.27 1.70 18.68 39.57 0.79 10.52 45.73 7.13 99.81
32 5 253.88 71.30 54.16 3.25 1.83 16.48 37.67 0.87 18.79 44.77 3.72 99.31
16 5 247.05 83.80 54.50 3.65 1.68 16.07 36.00 0.80 9.96 43.65 3.83 99.84

VGG-16

32 9 355.50 140.54 14.26 9.68 0.95 13.61 74.27 1.02 30.88 58.16 9.23 64.05
16 9 346.86 159.69 14.26 10.62 0.91 16.07 77.12 1.00 19.25 57.29 10.11 35.16
32 5 333.10 71.18 14.11 4.36 0.98 13.34 71.65 1.05 31.05 56.46 4.97 71.68
16 5 327.79 81.37 14.22 4.93 0.91 15.37 73.69 1.03 19.27 55.59 5.40 39.19

VGG-16bn

32 9 372.18 159.50 16.36 11.66 1.24 12.51 75.92 1.10 33.90 61.07 12.03 99.40
16 9 370.19 176.72 16.14 12.88 1.19 14.59 78.68 1.07 23.06 60.98 13.14 98.43
32 5 338.18 81.96 16.27 5.03 1.25 12.24 72.32 1.14 33.88 59.13 6.29 99.56
16 5 340.11 89.79 16.37 5.64 1.20 14.03 75.09 1.13 23.04 59.35 6.83 93.75

VGG-19

32 9 349.90 156.09 15.92 10.39 1.16 13.66 76.42 1.66 27.30 58.68 10.84 49.34
16 9 271.38 44.26 15.88 2.01 0.72 12.67 71.91 1.22 19.57 53.16 3.29 33.15
32 5 321.77 80.00 15.95 4.97 0.73 12.30 73.35 1.19 26.73 57.14 5.80 63.23
16 5 316.62 90.95 15.90 5.80 0.43 14.00 76.47 1.16 19.54 56.08 6.20 28.71

VGG-19bn

32 9 376.54 178.10 17.99 13.28 1.35 11.64 77.52 1.16 35.35 61.00 13.58 92.14
16 9 373.22 198.73 17.80 14.63 1.31 13.45 80.40 1.12 23.76 61.20 14.86 92.18
32 5 348.06 90.72 18.00 5.89 1.36 11.26 74.39 1.11 35.33 60.15 7.18 98.00
16 5 348.36 100.26 17.92 6.56 1.34 12.90 77.51 1.09 23.75 60.15 7.80 93.20

consumption with performance. For DenseNet and ResNet, the optimal config-
uration was determined to be a batch size of 32 with 5 training epochs, which
significantly reduced energy usage during both the training and testing phases

Fig. 3. Total energy consumption vs. models
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Fig. 4. Trade-off between global energy consumption and best F1 score

without compromising the models’ accuracy, as evidenced by their F1 scores.
Similarly, MobileNet demonstrated its energy efficiency under the same param-
eters, indicating a consistent pattern among these architectures for achieving
operational efficiency. The Inception model, however, diverged slightly, finding
its most energy-efficient configuration with a batch size of 16 and 5 epochs. This
adjustment offered substantial energy savings across the board, while still secur-
ing a high F1 score, illustrating that a slight reduction in batch size could yield
notable efficiency gains without sacrificing performance. VGG-16bn followed a
similar pattern to Inception, opting for a batch size of 16 and 5 epochs, which
was effective in reducing energy consumption while maintaining a commendable
level of accuracy. Conversely, VGG-19bn aligned with DenseNet and ResNet, fa-
voring a batch size of 32 and 5 epochs for its most energy-efficient performance.
This setup allowed for minimized energy usage during operations while achieving
a robust F1 score. This affirms that even among models with varying complex-
ities, there is an opportunity to achieve equilibrium between energy efficiency
and model accuracy. Our key insights are summarized as follows:

– The findings indicate a complex relationship between model depth and en-
ergy consumption, challenging the conventional belief that more complex
models are always more energy-intensive.The investigation into F1 scores
highlighted that architectural sophistication does not always translate to
enhanced model accuracy. For instance, despite VGG-19’s depth, it did not
consistently outperform the less complex VGG-16 in terms of accuracy.

– Through the lens of our analysis, it became evident that there isn’t a univer-
sal optimal batch size or epoch count that maximizes energy efficiency across
all models. Instead, each architecture demands a tailored approach to find
its equilibrium point that harmonizes energy consumption with model per-
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formance. Across all models, a trend towards selecting a moderate batch size
and a lower number of epochs (5) appears to be the sweet spot for optimizing
energy efficiency without significantly impacting the model’s performance.
This analysis underscores the critical insight that, despite the diversity in
architecture and design, DL models can achieve a delicate balance between
energy efficiency and performance through strategic adjustments in batch
size and epoch count.

– The research also highlighted a connection between the efficient use of hard-
ware resources and energy consumption. Models that were able to make more
effective use of hardware resources frequently demonstrated improved energy
efficiency without necessarily sacrificing performance.

In addressing our last research question (RF4) regarding the energy efficiency
of AI solution for processing time series sensor data, Table 3 outlines five dis-
tinct configurations of the kNNTime, TSFC and RISE algorithms. Each pro-
vides insights into how variations in sample lengths and the number of esti-
mators/neighbors impact the algorithm’s energy consumption and classification
performance. Figure 5 illustrates the energy consumption and performance anal-
ysis of ML algorithms, using the first three entries for each algorithm from Ta-
ble 3. The kNNTime algorithm demonstrates robust performance, particularly
evident through its consistently high F1 scores, which peak at 0.92 for both 400
and 100 sample lengths when utilizing just one neighbor.

Table 3. Comparison of algorithm performance and energy consumption across
different parameter configurations

Algorithm Sample N-Estim./ Mean Energy [Wh] Time [s] CPU F1
Name Length Neighbors Power [W] Training Testing Training Testing Usage [%] Score

kNNTime

700 1 83.77 0.015 7518.32 0.00 174.56 24.67 0.87
400 1 83.40 0.011 2466.45 0.00 57.02 24.67 0.92
100 1 80.17 0.013 153.32 0.00 3.410 24.59 0.92
700 3 83.56 0.017 7605.13 0.00 176.09 24.69 0.75
400 3 83.23 0.012 2449.15 0.00 56.50 24.67 0.73

RISE

700 100 77.93 47.87 31.16 1.00 0.69 24.71 0.92
400 100 76.89 42.97 28.06 0.89 0.62 24.52 0.92
100 100 71.58 18.99 12.33 0.41 0.21 24.37 0.92
700 50 73.75 22.92 14.83 0.45 0.32 24.43 0.92
400 50 76.51 21.19 13.81 0.45 0.29 24.27 0.95

TSFC

700 100 57.32 1.90 0.89 0.03 0.00 20.61 0.98
400 100 60.20 1.40 0.62 0.02 0.00 20.58 0.98
100 100 62.40 0.77 0.28 0.00 0.00 15.93 0.95
700 50 60.72 0.99 0.45 0.017 0.00 18.07 0.97
400 50 56.57 0.74 0.31 0.00 0.00 15.38 0.97

When examining energy and time efficiency, we observe that energy consump-
tion during testing presents considerable variation, escalating as sample length
increases. The energy required for training remains consistently low across var-
ious configurations, emphasizing the algorithm’s efficiency during the learning
phase.



14 Lejla Begic Fazlic et al.

Fig. 5. Energy consumption and performance analysis of ML algorithms

This is primarily because kNN, unlike many other ML algorithms, does not
require a separate training step to create a model; it simply stores the data and
makes inferences directly from the entire dataset during the prediction phase.
The most efficient configuration for kNNTime emerges with a sample length of
100 paired with a single neighbor. This setup also minimizes energy consump-
tion and reduces testing time, representing an optimal balance for those seeking
both precision and efficiency. For algorithm RISE, reducing the sample length
from 700 to 100 leads to a decrease in energy consumption throughout the train-
ing and testing phase, aligning with expectations that less data requires less
computational power. The F1 score remains consistently high across different
sample lengths, suggesting that RISE effectively maintains predictive perfor-
mance even with reduced data. Reducing the number of estimators from 100
to 50 decreases energy consumption in both training and testing phases without
significantly compromising the F1 score. This indicates an efficient use of compu-
tational resources by RISE, as it maintains high accuracy with fewer estimators.
RISE shows a consistent pattern of CPU usage across different configurations.
A sample length of 400 with 50 estimators provides the best balance of high
accuracy (F1 score of 0.95) with reduced energy and time consumption. TSFC
shows remarkable energy efficiency across all sample lengths, with a significant
decrease in energy consumption as sample length decreases. This suggests that
TSFC is particularly suited for energy-efficient processing of time series data.
The F1 score is very high across different configurations, indicating that TSFC
does not compromise on predictive performance even when optimizing for energy
efficiency. Similar to RISE, reducing the number of estimators for TSFC results
in lower energy consumption without a notable drop in F1 score. This efficiency
is especially remarkable, given the already low energy consumption of TSFC,
underscoring its suitability for energy-constrained scenarios. TSFC presents an
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optimal scenario where energy efficiency and high predictive performance co-
exist. It demonstrates that careful algorithm design and parameter tuning can
achieve high accuracy in ML tasks without incurring high computational costs.

5 Conclusion and Future Work

Our findings revealed a nuanced relationship between batch size and energy ef-
ficiency, where larger batch sizes led to increased mean power consumption but
also enhanced energy efficiency per data point, especially with larger datasets.
The study highlighted the importance of context-specific batch size selection, as
the optimal balance between energy efficiency and performance varies across
different scenarios. Investigating the impact of training dataset size, we ob-
served a direct correlation between increased dataset sizes and higher energy
requirements, alongside an improvement in model accuracy. This underscores
a crucial trade-off between energy consumption and model performance, indi-
cating that optimizing training processes necessitates a careful consideration of
dataset size. Our analysis across various DL architectures demonstrated that
each model exhibits its own optimal configuration that harmonizes energy con-
sumption with performance. This finding challenges the conventional wisdom
that more complex models are inherently more energy-intensive, advocating for
a tailored approach to training parameter selection. In examining AI solutions
for time series sensor data, strategic adjustments in sample lengths and the num-
ber of estimators/neighbors showed significant impacts on energy efficiency and
model accuracy. This suggests that for energy-sensitive applications, choosing
the right parameters can lead to substantial energy savings without major ac-
curacy sacrifices.The collective insights from our research emphasize the critical
role of strategic parameter selection in achieving energy-efficient ML practices.
In our future work, we will investigate the cause of the observed GPU usage peak
at the 80% dataset size, examining factors such as hardware configuration and
potential system bottlenecks. Additionally, since our current energy efficiency
assessment is based on specific hardware configurations, we recognize the impor-
tance of broadening the scope to improve generalizability. To achieve this, we
plan to expand the datasets and include additional models in our analysis.
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10. E. Garćıa-Mart́ın, C. F. Rodrigues, G. Riley, and H. Grahn, “Estimation of energy
consumption in machine learning,” Journal of Parallel and Distributed Computing,
vol. 134, pp. 75–88, 2019.

11. S. Georgiou, M. Kechagia, T. Sharma, F. Sarro, and Y. Zou, “Green ai: do deep
learning frameworks have different costs?,” in Proceedings of the 44th Interna-
tional Conference on Software Engineering, ICSE ’22, (New York, NY, USA),
p. 1082–1094, Association for Computing Machinery, 2022.

12. R. Verdecchia, L. Cruz, J. Sallou, M. Lin, J. Wickenden, and E. Hotellier, “Data-
centric green ai an exploratory empirical study,” in 2022 International Conference
on ICT for Sustainability (ICT4S), (Los Alamitos, CA, USA), pp. 35–45, IEEE
Computer Society, jun 2022.

13. S. Gholami and M. Omar, “Can pruning make large language models more effi-
cient?,” 2023.

14. X. Wang, H. Wang, B. Bhandari, and L. Cheng, “Ai-empowered methods for smart
energy consumption: A review of load forecasting, anomaly detection and demand
response,” International Journal of Precision Engineering and Manufacturing-
Green Technology, pp. 1–31, 09 2023.

15. S. Naumann, M. Dick, E. Kern, and T. Johann, “The greensoft model: A refer-
ence model for green and sustainable software and its engineering,” Sustainable
Computing: Informatics and Systems, vol. 1, no. 4, pp. 294–304, 2011.
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J. Hörnschemeyer, G.-D. Hoffmann, D. Junger, T. Kennes, S. Kreten, P. Lago,
F. Mai, I. Malavolta, J. Murach, K. Obergöker, B. Schmidt, A. Tarara, J. P. De
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