
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE 
must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, 
creating new collective works, for resale or redistribution to servers or lists, or 
reuse of any copyrighted component of this work in other works.



Cypher Social Contracts
A Novel Protocol Specification for Cyber Physical Smart Contracts

Lars Creutz
Institute for Software Systems

Trier University of Applied Sciences
Birkenfeld, Germany

Email: l.creutz@umwelt-campus.de

Guido Dartmann
Institute for Software Systems

Trier University of Applied Sciences
Birkenfeld, Germany

Email: g.dartmann@umwelt-campus.de

Abstract—Social interaction is the foundation of the Internet.
Nevertheless, contract drafting is a tedious task and often too
complex for normal social interactions between individuals or
small service providers, which has led to the rise of centralized
services to manage contracts, purchases or other arrangements.
In order to give regular users more privacy and a place for
self-organization, this paper describes the definition of a novel
protocol that allows the creation of generic smart contracts
which can be processed by machines or create social interaction
between humans while maintaining a high level of privacy and
anonymity.

1. Introduction

The concept of a smart contract, first defined by Nick
Szabo in the 1990s [1] [2], describes the general idea of
a distributed contract mechanism in the context of contract
law in combination with cryptographic security, especially
by using public key cryptography, for the involved parties.
Most of the systems in use today, of which some are
described in Section 2, require programming skills and a
deep understanding of the underlying system which is chal-
lenging for non-experts. In addition, new types of security
vulnerabilities arise due to misuse. As money is exchanged
on these platforms, economic damage can be caused to
companies and private individuals [3]. Therefore we propose
a novel system, that allows to define and interact with
generic contracts, which are created from reusable tem-
plates, within a distributed network, by agreeing on a secure
network protocol. The proposed system can be used as a
top-level layer for existing or new applications and is only
responsible for processing the contract tasks, on the basis
of which further actions can be performed in the respective
system landscape. We predominantly focus on social aspects
and want to promote self-organization within decentralized
networks by making it easy to create and maintain contracts.

2. Related Works

Askemos [4] was first introduced in 2002 and describes
the concept of a distributed operating system based on web

technologies, especially XML. The aim of the project is to
distribute information forgery-proof. For this purpose, the
authors implement a virtual machine, which is defined on
the basis of abstract trees and is viewed by the network
participants. The users of the network vote on the cor-
rectness of the virtual machine based on their own data,
which uses Byzantine Fault Tolerance in order to reach
consensus. BALL [5] is the first reference implementation
of the Askemos project containing some example services.
However, there is hardly any literature or reports on the
system.

Hawk [6] is a decentralized smart contract system
whose intention is to store transactions encrypted within a
blockchain in order to protect the privacy of the transactions
and thus the flow of money. The authors present a compiler
which translates the respective Hawk program into three
parts: a public blockchain program, a user program and a
manager program. The manager is trusted by the parties and
can therefore see any input to the contracts without having
influence on the underlying protocol. Even if they make
proposals to secure the manager, it means for a contract that
there must always be another party involved, which must be
trusted in terms of information disclosure.

Ethereum [7] can be described as a blockchain which
includes a Turing complete programming language to write
decentralized applications or any sort of smart contract. The
white paper describes several application areas like saving
accounts, insurance and marketplaces. In general, the areas
of application refer primarily to the financial sector. The
execution of code that changes the status of the network is
subject to a fee.

Ricardian Contracts where described in [8] as part of
the Ricardo payment system. The proposed concept can
be seen as guide to digitalize financial organizations. The
created contracts contain machine-readable references, but
are also human-readable which leads to legally binding
contracts. The system took several cryptographic methods
into account, for example hashing and digesting messages
for integrity, encryption to keep information confidential
and authentication to sign and verify interactions with the
contracts.
Before we describe our protocol in more detail, we start by



explaining possible applications, the intention of the system
and in how far our protocol differs from the previously
described systems. Most of the used systems today are
based on a blockchain and include some sort of currency
within the framework. We follow a different approach, in
that we only map the contract to its tasks and separate it
from the payment process. Interactions inside the network
never include fees, because the network does only take
care of the information throughput, so that the involved
parties of a contract receive the latest state to do the work,
which is either computation (on an automated contract)
or a real world task. Therefore we do not focus to reach
an uniform level of information within the network, but
instead on a social network in which honest participants
check the correctness of transactions and transmit them to
other nodes until the correct recipient is reached. One of the
protocols design goals is to be compatible with (low-level)
IoT devices in terms of easy to implement abstractions. One
key research question in our work is the integration in rate
limited communication networks. A typical application is
a LoRaWAN-based IoT network where the capacity of the
communication channel is limited [9] and the device is not
directly connected to the internet. In addition to the inclusion
of all types of sensors and devices, our system allows
communities with a limited level of digitalization to self-
organize their cultural and service offerings, thereby pro-
moting cultural participation and local businesses without
relying on external institutions. The decision not to focus on
payment is based on the intended application context of the
system. Research like [10] shows the risks in the technical
acceptance of the cryptocurrency Bitcoin from the point
of view of users and developers. Risks for users include
security, third-party errors, the loss of privacy and fraud. One
major challenge in the use of smart contracts for the non-
technical audience lies in the potential hurdles in creating
such contracts [11]. Regular service providers who want
to offer their services in a small community might not be
interested in a cryptocurrency, nor have the technical skills
to implement a secure smart contract. Instead, the service
providers can offer their services as usual, defined in a
natural language, inside an easy to use system which allows
them to interact with a larger audience. At the same time,
the system can also be used in larger organizations, which
can define and handle existing or new business processes as
contracts, without revealing too much of their own system
infrastructure. Some integration examples are given in Sec-
tion 4 where we describe how different organizations could
collaborate using our protocol and how it could be used
within the IoT sector. Furthermore, we want to promote the
decentralization of network infrastructures and applications
while contributing to the field of secure ubiquitous comput-
ing [12] by trying to specify the protocol in a way that any
type of device can be included. We are convinced that self-
organization and moving away from central organizations
is a significant advantage in terms of data protection and
privacy. Furthermore, an open protocol, which can also be
used on inexpensive hardware, offers advantages in many
different application areas. In summary, we see our system

as a link between smart contracts and Ricardian contracts
[8]. There is a kind of legal binding, as the contracts
can be written in human-readable language. However, the
specification of the protocol allows an automation of the
actions to be performed. Our focus is not on finance, but
on facilitating interactions between individuals or devices
in the form of simple contracts.

3. System design

3.1. Motivation

Our idea of the system knows some similarities to the
Cypherpunk’s Manifesto by Eric Hughes [13] and therefore
refers to the same in the following specification and in
the title of this paper. The goals and problems stated in
1993 are still valid today. His work addresses the need
for freedom of speech for every party inside a forum of
an open society. Communication within the network must
therefore be secure for the individual parties, yet transparent
for all other participants, in order to implement a forum of
this kind and to consolidate a widely distributed network.
The information disclosed must be kept to a minimum
to protect individual privacy and must be correspondingly
securely encrypted. Furthermore, the system must be open
and distributed, so that everyone is given the opportunity
to participate. In addition, no central unit should be able to
force how the system may be used, allowing the develop-
ment of abstractions to further enhance the spread and use of
the system. Hughes describes the difference between privacy
and secrecy1, which should be clarified in the context of our
protocol. Every network participant must have the right to
disclose only the information he wants and still make his
contribution to the functioning of the network. In order to
interact with a particular contract, it may be necessary to
disclose private information. The user must therefore be able
to provide this information to the other party in a secure
manner. Providing private information always carries the
risk of interest tracking and personal profiling. Within our
system there must be the possibility to change the identity
continuously, so that not only a minimum of data is securely
exchanged between two parties, but also that the identity
does not have to be used again afterwards. To reach privacy
and secrecy, we rely on several cryptographic procedures
which we describe within the next sections. The user is
secret in terms of the interaction with the network because
only the current IP address2, without any direct reference
to the origin of the transaction, is known from the point of
view of the other users.

1. ”A private matter is something one doesn’t want the whole world to
know, but a secret matter is something one doesn’t want anybody to know.”
[13]

2. We note that this does not mean, that a user can’t be tracked by using
geo-localisation. It just means that a party can’t be sure if the received
transaction was created or just forwarded by that IP address. Nevertheless,
any user could be behind a VPN or proxy to increase his anonymity.



3.2. Protocol definitions

Account. An account Ai of a user i is defined as a tuple
of private (secret) Ki,S and public key Ki,P in the field of
public key cryptography.

Ai = (Ki,S ,Ki,P ) (1)

The public part Ki,P of the account is included in all trans-
actions so that every network participant has the possibility
to verify the authenticity of the received message, since it
must be signed using Ki,S .

Task. We define a task t as the hash value of its description
D:

ti = H(Di) (2)

If the confirmation of a task ti requires that data d has
to be transmitted to the other party j, we use ephemeral
key pairs KE to encrypt the data and reach forward secrecy
[14]. Each party embeddes a new public key during in the
contract creation process. To encrypt data during the actual
processing of the tasks, the temporary keys are combined
to generate a shared secret, which is used to symmetrically
encrypt the input I(d) to the contract Ci,j for the respective
task ti.

i→ j : {I(d)}(KE j,P ,KE i,S) (3)

Hence only the correct recipient of the transaction is able to
determine the specific content of the message by decrypting
it with the same shared secret. Additionally the ephemeral
keys can be destroyed after a contract was finished. Leaking
the private key would comprise the account but it still would
not be possible to access the contents of fulfilled contracts.
At the same time, all other network participants confirm the
integrity of the encrypted data while validating the signature.

Template. The template is the base of which a contract is
derived from and must be published prior to the contract.
Our approach allows to reuse the same template for an
unlimited amount of contracts. The reusability of the task
definitions, in combination with the chosen data structure,
allows to automate processes.

Oj = (HOj
,Kj,P , rM , T,R,B) (4)

The template is defined by the receiver of the contract j
and contains the task definitions D in T = {D1,D2, ..,DN}
which are used to calculate a Merkle tree [15] and its root
hash rM . A Merkle tree M is defined [16] as a binary
tree M = (VM , EM ) with a set of nodes VM and a set
of edges EM and a root rM ∈ VM . Merkle trees are used
to keep the amount of data to be transmitted within the
network as low as possible and create the functionality to
easily look up tasks and map them to a specific action in the
respective systems. New contracts do not need to include all
task definitions, because they are given in the template and
are referenced by rM . The defined tasks must be completed
in the correct order for the network to determine the actual
state of a contract. For this purpose, R = {r1, r2, ..., rN},

TABLE 1. OVERVIEW OF A CONTRACTS STATE

State Definition
init The contract has been published (offer) and

references to a given contract template
rejected The creator of the contract template rejected

the offer
live The receiver (publisher of the contract tem-

plate) accepted the contract
finished All tasks of the contract have been completed

maps the affiliation of a task to a party. Network participants
also use the Merkle tree to check if the correct task was
addressed. Besides the definitions of the tasks, the template
also includes a description B. The respective templates are
not semantically checked, so the description and/or task
definitions can be completely anonymous/obfuscated and the
actual content of the contract can be agreed upon via other
channels. Any published template is in the state active and
can be revoked by the creator, changing the state to inactive.
After a revocation, a template cannot be reactivated.

Contract. Contracts consist of two parties i and j which
have agreed on a set of tasks using a the publicly available
template.

Ci,j = (HCi,j
,Ki,P ,Kj,P , N, rM ,Oj , R) (5)

Every contract contains a reference to an active template
Oj and reuses several elements of that template to increase
the performance when validating transactions during the
contract execution, because network participants only need
to access the template when adding the contract to their
local state.
Table 1 shows the states of a contract within our protocol.

Transaction. A transaction Ti of a user i is defined as:

Ti = (HTi
,Si,Ki,P , data, type,KE i,P

3) (6)

where HTi
is the unique hash of the transaction, Si the

signature by user i of HTi
using Ki,S , Ki,P the public

portion of the users account Ai and data/type define the
nature of the transaction corresponding to Table 2.

3.3. Template/Contract creation

To illustrate the protocol definitions we introduce a
simple example that is referenced in the next sections. We
assume a service provider j that offers a specific good
including a delivery and begin with the template definition.
Based on (4) the template Oj includes T = {”Specify
amount and delivery address”, ”Deliver amount of prod-
uct to the address”, ”Confirm the delivery”, ”Confirm the
payment”} and R = {S,R, S,R}. After the definition of

3. The ephemeral public key KE i,P is only added if the type of a
transaction is either an offer or the acceptance of a contract



TABLE 2. DATA AND TYPE OF A TRANSACTION DEPENDING ON ITS
APPLICATION CONTEXT

Type Data
Confirm Task Contract hash, task, proof, trans-

action reference, input data
Contract Offer Entire contract
Contract Accept Hash of the accepted contract
Contract Decline Hash of the declined contract
Template Publish Entire template
Template Revoke Hash of the active template

Contract Template

receiver: cd9...961
merkle top: 9a4...7fe
task definitions:
”address/amount”,
”delivery”,
”confirm delivery”,
”confirm payment”
responsibility: [S,R,S,R]

hash: 670...7b2
Contract

hash: bfd...f75

template: 670...7b2

receiver: cd9...961
sender: f4e...96c

signature(bfd...f75)signature(670...7b2)

merkle top: 9a4...7fe
num tasks: 4

responsibility: [S,R,S,R]

Figure 1. Overview of the resulting template and contract. The figure is
simplified and is intended for clarification only. Therefore the keys are
shown as fingerprints and not in the real encoding format. Likewise the
signatures shown also refer to the hash of the template/contract, although
they refer to the respective transaction in the implementation.

Oj the corresponding transaction (6) Tj is created where
data = Oj and type indicates that the sender of the
transaction wants to publish a new template. The customer
i accesses the publicly available, active contract template
Oj to generate a new contract Ci,j and publishes it within
the network. After the transaction of user i with (6) where
type describes an offer and data = Ci,j has reached the
service provider j, the latter can decide whether to accept
the contract and thus start the processing. Fig. 1 shows
the relationship between template and contract within our
system design. The generated hash values of the template
and contract are based on the concatenation of the given
input values. In addition to the contents shown, the proto-
col contains further implementation-specific fields such as
timestamps and nonce values to guarantee that the generated
hash values are unique. Furthermore, templates contain a
description, which will make it possible to search for a
specific contract template and implement an easy to use
marketplace in the future. To be compatible and open for
abstractions, the nonce value of a contract can be specified
by the user. It is important to note that a reused nonce
will lead other nodes to decline the contract because it is
already present in their local state. Nevertheless we need
to be able to generate a contract with as low input data as

possible. When using an active template in our LoRaWAN
use case, we can generate a nonce for the contract on the
low-level device, which will be reused by the abstraction to
recreate the same contract. Any interaction between the two
components would refer to the same contract, even though it
was never transmitted via LoRaWAN due to the rate limits.
The associated transaction is only known at the abstraction
and never seen by the device. We note that the framework
to be released in the future may slightly differ from the
presentation, as implementations are evaluated and improved
to provide a stable and secure reference implementation.

3.4. Contract interaction

In order to interact with the contract Ci,j , a transaction
Ti must be transmitted to the network which must reach the
other party j either directly or indirectly. Participants who
receive the transaction must first check whether the signature
Si contained in the transaction is valid by using the corre-
sponding public key Ki,P . Given a valid signature, the nodes
also check whether the received transaction Ti matches their
local state of the contract Ci,j . If the transaction Ti refers
to a state that is unknown to the participant (for example: a
different number of tasks already performed), other network
participants are instructed to forward the previous transac-
tions. This can lead to a chain of requests, which propagates
through the network until the desired information is avail-
able. In order to simplify this procedure and at the same
time ensure that the respective participants have specific
information about the transaction, each transaction Ti refers
to the previous transaction Tl i.e. Ti → Tl by including
the hash HTl

. This facilitates the search process within the
network to determine whether the contract is processed in
the correct order. To ensure the integrity of the protocol,
the transactions also contain a proof (authentication path
[15]) which the other nodes use to calculate the respective
Merkle top (root) hash rM . We note that checking integrity
cannot tell whether the task has actually been performed
or not. However, for the network participants who only
receive the transaction and are not part of the contract,
only the reference to the correct previous transaction and
the proof that the task addressed belongs to the contract is
important. This procedure allows other network participants
to validate a transaction Ti by knowing only the original
contract Ci,j , without accessing the associated template that
was used to create it, after the contract was accepted. The
presence of the number of tasks N in the actual contract also
prevents second preimage attacks [17], as it must contain a
proof related to the number of tasks N . Given the previous
example, every network participant who knows the contract
Ci,j now knows that the number of tasks is N = 4. Thus the
structure of the tree is determined. The respective proofs are
stored as arrays, whose fields refer to the nodes within the
tree. Each transaction must send log2(N) additional hash
values to verify the integrity of the transaction [15]. Fig. 2
shows an example tree with 4 tasks. In general, the protocol



merkle top

H(H(1)+H(2)) H(H(3)+H(4))

H(1) H(2) H(3) H(4)

Figure 2. Merkle tree generated from the previously introduced example.
The orange node refers to the task which the transaction wants to confirm.
The green nodes are necessary for other network participants to check the
integrity

guarantees for the number of tasks:

log2(N) ∈ N (7)

by adding padding (empty tasks) to the end of the list if
needed. Before we show the proof for the second task within
the contract, we will explain the transmission of the first
task confirmation for the sake of completeness. Since the
first task cannot refer to any previous one, it refers to the
transaction of the template creator who accepted the offer
for the contract and thus set the status from init to live.
To describe the confirmation we use the following more
readable notatation:

Hi = H(i) (8)

Hi,j = H(H(i) +H(j)) (9)

The transaction Tj4 to confirm the (current) second task
tc=2 needs to include the values of H1, H3,4 and H2,
resulting in a data structure similar to:

p = [0, 0,H3,4,H1,H2, 0, 0] (10)

The index of H2 must match the following condition (with
the consideration of possible padding):

index = c+N − 2 (11)

The other network participants use those hash values
to calculate the top hash of the tree rM and compare it
to the value which was used to define the contract Ci,j .
Because a full binary tree is created by (7), it is sufficient
for the recipients of the message to perform the follow-
ing operations to validate a transaction Tj with (6) where
data = {HCi,j , t2,p, Tl} and type indicates a confirmation:

1) Test if the signature Sj of the transaction Tj is valid
and matches the known public key Kj,P published
in the contract Ci,j

4. In our example, the receiver j is responsible for the second task, which
is illustrated in Fig. 1

2) Confirm that the task t2 addressed by the transac-
tion is valid for the party that issued the transaction

3) Get the previous transaction Tl from the transac-
tions sender or other nodes if necessary

4) Build the tree by the given values in p
5) Check if the calculated top hash is equal to the

contracts top hash rM
6) Update the local state of the contract and broadcast

the transaction to other users

Each of the nodes in between the process of the trans-
portation of the transaction also check the validity of the
transaction by applying the described method. The protocol
defines that a trusted peer does not redirect an untrusted
transaction, which contributes to the social intention prin-
ciple and will exclude non-working peers that only try to
mirror and redirect transactions without validating the sig-
natures. Since the transactions can be understood as a receipt
and the uninvolved network participants who may receive,
validate and transmit the transaction cannot necessarily be
trusted to archive the transaction indefinitely, the parties
included in the contract must store the transactions in order
to document the current status of the contract.
In general, the transaction addresses its destination by re-
ferring to a unique point of the network, which can be a
contract or a template. An abstraction to make the protocol
available for an unsupported device must only ensure secure
communication between itself and the particular device,
including a scheme to address a contract or template.

3.5. Network interaction and architecture

In the following we provide an insight into the network
architecture of the overall system. In general, we implement
a peer to peer network to support the core functionality of
the described system. The further development of network
abstractions for using our system with low-level IoT devices
is not described in this paper. Challenges in the structure
and implementation of peer to peer networks are described
in [18] and [19]. The protocol provides that each participant
is able to determine his communication partners, as well as
the number of connections maintained, which provides the
possibility of running private subnetworks of the protocol.
We distinguish between full nodes, which accept incoming
connections, and normal nodes that connect to full nodes
to publish their transactions. Normal nodes will still receive
other transactions, broadcasted by full nodes, and can apply
filters to decide whether the transaction should be included
in their own database. The type of node is exchanged on
the first interaction between two nodes. If a node states to
be a full node, it is added to a local database that manages
the available endpoints. Depending on the specified number
of active connections, each connection establishes additional
connections to other nodes, which are used for broadcasting
and when the original connection is interrupted. Those
additional connections are shared inside a factory object,
so that the main connections do not connect to the same
backup nodes. Within the main scope of the frameworks’



TABLE 3. SUBSET OF THE MESSAGES INSIDE THE PEER TO PEER
NETWORK WITH CORRESPONDING RESPONSES

Message Description Response
PING Keep alive of

a connection
and feedback to
other nodes

PONG

DISCOVER Ask for a nodes
other peers

List of peers run-
ning full nodes

CONTRACT
(GET)

Get the specific
contract
identified by
its hash

Requested con-
tract if present

TEMPLATE
(GET)

Receive
information
about the
requested
template

Related template
to create con-
tracts with

TRANSACTION
(GET)

Request a spe-
cific transaction

Corresponding
transaction if
present

STATE
(GET)

Information
about the current
state of an
object (contract
or template)

Point of view of
the object with
the local infor-
mation

PUBLISH Publish a new
transaction

Confirmation
that the node
accepted the
transaction

INFO Information
about the current
type of a node

Node
information
of the receiving
peer

usage, new full nodes are added automatically, whereas in
private networks all available endpoints must be specified
by the user.

In Table 3 we describe some messages that are ex-
changed between the participants. These messages do not
refer to the transmission of the actual contracts or templates,
but to the implementation of the networking protocol. The
list is not exhaustive and only clarifies how communication
takes place and how the respective participants adjust their
level of knowledge. The network interaction should be kept
to a minimum. It must be possible for the participants
to keep an overview of who is currently contributing to
the network by continuously pinging the other nodes. The
option to disclose active connections of other users allows,
in case of a fluctuating number of communication partners,
to establish further connections to previously unknown net-
work participants, in order to maintain a certain number of
active connections. In addition, it must be possible for nodes
to efficiently exchange information about the current state
of the network. For this purpose, each participant checks,

after the connection to the network has been established,
whether new transactions are available, based on the times-
tamp of the last received one. If the local status differs,
the respective existing transactions are exchanged. The most
important aspects for participating in the network are an
internet connection for receiving and forwarding messages
and sufficient storage space, which is becoming increasingly
cheap.

3.6. Reaching consensus

We define consensus as the correct level of information
for every party involved in the interaction. Our system can
be seen more as a forum and does not represent a distributed
ledger. Therefore consensus is based on the resulting surplus
value for the users of the system and the number of honest
network participants. Every honest contributor must record
all necessary transactions in order to document the state
of a contract, as the protocol requires that the transactions
are carried out in the correct order. For this purpose, it is
sufficient to store the signed transactions, which refer to the
respective contract or template, and the local state of the
network which is built from the received transactions. Since
our goal is to provide the basic system and leave it openly
configurable for many purposes, we expect that gradually
central instances will emerge, which will be trusted by some
parts of the users. An example would be a trusted third party
that provides a contract template for obtaining information
about service providers. If a service provider openly dis-
closes his identity there, the central authority, which must
be trusted by the user in this case, can make a statement
about the reputation of the service provider and in this case
increase the probability that the respective contract will be
processed accordingly. Assuming the application context for
automated processing of contracts in the form of devices, it
can also be expected that those contracts will be processed as
intended. The system therefore only supports their coopera-
tion and administration by providing an abstract interaction
layer and a distributed data management for the users that
follow the protocol. We still want to point out a possible
attack scenario when trying to cheat inside the network. A
dishonest user could send two different transaction referring
to the same task to various nodes. Hereby the malicious user
would try to get surrounding nodes to accept both states. If
that intentionally wrong transaction reaches the other party
of the contract and leads to the next step being fulfilled
with wrong input to the previous task, the whole contract
would be compromised. Nevertheless, the other party has the
proof of a signed transaction by the malicious user, because
he included it inside the next task. Honest nodes would be
able to identify the dishonest network participant quickly.
Furthermore, there is zero to no benefit on trying to cheat
because we focus on the abstract tasks themselves and do not
need to have a single true state of the network. All honestly
performed tasks, which are based on dishonest previous
transactions, can be clearly clarified within a legal dispute.
We believe that there are enough secure digital currencies
in the currently available systems and their derivatives.



A

B

C

Figure 3. Interaction between two parties that is observed by a third party
involved. The actual systems of the parties are not part of the public
network, which contributes to system security and simplifies cooperation

Therefore, our protocol focuses only on the decentralized
creation of contracts in combination with the validation of
the interactions between the network participants. We open
a digital forum for self-organization, which can be used
by everyone for any purpose. The payment process can
take place in any form and depends only on the agreement
reached between buyer and seller.

4. System integration

To conclude the description of the system, we give
some examples of the wide-ranging integration possibilities
and application areas of the protocol in the following. As
mentioned, we see the system as an opportunity for struc-
turally weak regions in terms of digitalization to promote
self-organization. Services can be offered and processed
conveniently inside a decentralized platform over which the
users retain full control. Likewise, no additional systems
are required for interaction, since a peer to peer network
eliminates the need for a central instance. Additionally we
emphasize the new possibilities for completely isolated areas
to use similar services and to process the contracts accord-
ingly via the mentioned LoRaWAN abstraction. Overall,
social interaction can benefit from our system in general,
as no expert knowledge will be required to use the system
safely, allowing not only service providers but also regular
agreements to be documented inside an open network. The
data can be stored distributed on various devices, that are
continuously aware of the current state of the network,
reducing the vulnerability of a central system. In addition
to the social interaction of private individuals, the system
can also be interesting for business cooperations of many
kinds, as it allows the respective individual systems to be
encapsulated from cooperation partners while still being able
to collaborate. The transparent interactions also enable a
far-reaching knowledge alignment, on the basis of which
individual activities are defined. Fig. 3 shows a direct co-
operation between two contract partners. In our example,
we assume that party A is currently cooperating with party
B, while party C is not directly involved in the contract.

However, if party C knows the context of the interaction
between A and B, and possibly collaborates with party A
in the future, actions can be performed in party C’s system
that improve the subsequent workflow with party A without
connecting the underlying systems of the three parties. The
network shown in Fig. 3 could at the same time be entirely
private, allowing the parties to agree on who is able to
monitor their interactions, increasing the likelihood to even
consider to use the protocol inside a closed company infras-
tructure. Additionally the created contracts could be used to
control ubiquitous devices. One simple example would be
the control of devices within a smart home environment.
Imagine a device that handles the temperature control and
manages the corresponding contract template. Within the
automation process it can be specified that only contracts of
known accounts are accepted. During contract processing,
the contract creator now specifies the desired temperature
as data input to the confirmation of the respective task,
which is then set by the device. Possible attack scenarios
and concerns regarding privacy, described in [20], can be
prevented while having full control over your device and
your personal data. Finally, we would like to emphasize the
automatability of the respective processes within contract
processing. Recurring tasks, which are defined in the same
way in different contracts, are clearly identifiable by their
hash value H. The use of a Merkle tree therefore not
only allows the automation of the respective tasks, but
also creates a context between task and contract. Thus a
logical separation and classification can be made within the
automated processing. One simple example would be the
distinction between private and business customers inside
an order process. The task for transmitting contact data
(address, mail, etc.) can be defined in the same way and can
trigger the respective action in the target system, whereas
the contract provides the context, such as how the invoice
is created with regard to the respective taxes.

5. Conclusion and future work

We have presented a novel protocol for the creation
and execution of Cypher Social Contracts which presents a
different view on the field of smart contracts. We focus on
the anonymity of the users and on ensuring that the correct
state of the contract processing cannot be distorted as long
as there are enough network participants distributing the
transactions. The information to be provided varies depend-
ing on the content of the contract and thus minimizes the
necessity to disclose private information. Likewise, by using
transparent contract templates, users can see exactly what
information they need to disclose. The system deliberately
protects its users and contributes to data protection in an era
where personalized advertising is omnipresent. In addition,
our approach enables the use of the protocol in private
networks without the need to make the application area or
the underlying infrastructure publicly known. This is not
only beneficial for collaborations between companies, but
can also be used in the private sector to establish contracts



between devices that execute tasks automatically within an
encapsulated infrastructure.

As already mentioned in the paper, our current main
focus is on providing a compatible LoRaWAN abstraction
to use the postulated system and express its benefits for low-
level devices in the IoT area. Therefore we are currently im-
plementing a secure middle man service to be able to interact
with a contract without any sort of internet connectivity on
the devices that provide the input data. Our primarily focus
lies on mobility on demand applications and on advancing
the generic smart contract platform for any other domain to
use it. Furthermore, a marketplace will be built and tested
for those application domains where sensors, persons and
cars will interact with each other. Lastly, we test and extend
the framework and its abstractions in order to make them
publicly available soon.

Acknowledgment

This work has been funded by the Federal Ministry of Trans-
port and Digital Infrastructure (BMVI) within the funding
guideline ”Automated and Connected Driving” under the
grant number 16AVF2134C and under the research initiative
”mFUND” under the grant number 19F2102F.

References

[1] N. Szabo, “Smart contracts,” http://www.fon.hum.uva.nl/rob/Courses/
InformationInSpeech/CDROM/Literature/LOTwinterschool2006/
szabo.best.vwh.net/smart.contracts.html, 1994, [Online - accessed
04-15-2020].

[2] ——, “Smart Contracts: Building Blocks for Digital Markets,”
http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/
CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/
smart.contracts 2.html, 1996, [Online - accessed 04-15-2020].

[3] A. Mense and M. Flatscher, “Security Vulnerabilities in Ethereum
Smart Contracts,” in Proceedings of the 20th International
Conference on Information Integration and Web-Based Applications
& Services, ser. iiWAS2018. New York, NY, USA: Association
for Computing Machinery, 2018, pp. 375-380. [Online]. Available:
https://doi.org/10.1145/3282373.3282419

[4] F. Wittenberger, “Askemos-a distributed settlement,” 2002.

[5] ——, “BALL - Askemos,” http://ball.askemos.org/, [Online - ac-
cessed 04-20-2020].

[6] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The Blockchain Model of Cryptography and Privacy-Preserving
Smart Contracts,” in 2016 IEEE Symposium on Security and Privacy
(SP), 2016, pp. 839–858.

[7] V. Buterin et al., “Ethereum white paper,” https://github.com/
ethereum/wiki/wiki/White-Paper, 2013.

[8] I. Grigg, “Financial Cryptography in 7 Layers,” in Financial Cryp-
tography, Y. Frankel, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2001, pp. 332–348.

[9] F. Adelantado, X. Vilajosana, P. Tuset-Peiro, B. Martinez, J. Melia-
Segui, and T. Watteyne, “Understanding the Limits of LoRaWAN,”
IEEE Communications Magazine, vol. 55, no. 9, pp. 34–40, 2017.

[10] D. Folkinshteyn and M. Lennon, “Braving Bitcoin: A technology ac-
ceptance model (TAM) analysis,” Journal of Information Technology
Case and Application Research, vol. 184, pp. 220–249, 03 2017.

[11] Stuart D. Levi and Alex B. Lipton, “An Introduction to
Smart Contracts and Their Potential and Inherent Limitations,”
https://corpgov.law.harvard.edu/2018/05/26/an-introduction-to-
smart-contracts-and-their-potential-and-inherent-limitations/,
[Online - accessed 22-09-2020].

[12] M. Weiser, “The Computer for the 21st Century,” SIGMOBILE Mob.
Comput. Commun. Rev., vol. 3, no. 3, p. 311, Jul. 1999. [Online].
Available: https://doi.org/10.1145/329124.329126

[13] E. Hughes, “A Cypherpunk’s Manifesto,” http://www.activism.net/
cypherpunk/manifesto.html, 1993, [Online - accessed 04-25-2020].

[14] W. Diffie, P. C. V. Oorschot, and M. J. Wiener, “Authentication and
Authenticated Key Exchanges,” 1992.

[15] R. Merkle, “Protocols for Public Key Cryptosystems,” 04 1980, pp.
122–134.

[16] M. Ogawa, E. Horita, and S. Ono, “Proving Properties of Incremental
Merkle Trees,” in Automated Deduction – CADE-20, R. Nieuwenhuis,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 424–
440.

[17] B. Laurie, A. Langley, and E. Kasper, “Certificate Trans-
parency,” https://www.rfc-editor.org/info/rfc6962, 2013, rFC 6962,
DOI 10.17487/RFC6962.

[18] D. Bandara and A. Jayasumana, “Collaborative Applications over
Peer-to-Peer Systems - Challenges and Solutions,” Peer-to-Peer Net-
working and Applications, vol. 6, 07 2012.

[19] W. Nejdl, W. Siberski, and M. Sintek, “Design Issues and
Challenges for RDF- and Schema-Based Peer-to-Peer Systems,”
SIGMOD Rec., vol. 32, no. 3, p. 4146, Sep. 2003. [Online].
Available: https://doi.org/10.1145/945721.945731

[20] A. Dasgupta, A. Q. Gill, and F. Hussain, “Privacy of IoT-enabled
smart home systems,” in Internet of Things (IoT) for Automated and
Smart Applications. IntechOpen, 2019.


