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Abstract—LoRaWAN is primarily used in the field of Internet

of Things (IoT) applications to transmit sensor values at low

cost and build applications on that data. However, LoRaWAN

is not commonly used to actively participate in applications.

In this paper, we present a universal approach to integrate

LoRaWAN into larger cyber-physical systems. For this pur-

pose, we developed an abstraction for Fides, a framework

for decentralized cyber-physical contracts, and show how to

participate in those contracts with LoRaWAN, even in offline

regions without Internet connectivity. Therefore, we present

both the necessary extensions to Fides itself, as well as the

LoRaWAN protocol used for communication. These compo-

nents are complemented by a secure middleware, which not

only translates the LoRaWAN transactions and acts on behalf

of the users but also provides information about the contracts

back to the devices.

1. Introduction

In this paper, we present a system that is particularly
suitable for the digitization of structurally weak regions.
On the application layer, the system is based on the soft-
ware Fides, which we published in [1]. Fides is based on
decentralized networks and allows the exchange of digital
contracts on inexpensive (low performance) hardware with
low energy consumption. In this work, we extend the Fides
framework with a LoRaWAN1 abstraction that allows to
participate in contracts without an Internet connection, using
a Raspberry Pi2 as hardware platform.3 We describe a
LoRaWAN protocol, which is the basis for the abstraction,
and show our approach for a middleware that translates the
transmitted data over LoRaWAN on behalf of the users.
Since LoRaWAN uses license-free radio resources, the com-
bination of Fides, LoRaWAN and a secure middleware to
translate and exchange the messages is a solution for many
regions in the world to digitize processes and to develop new
business models, even without a permanent internet connec-

1. LoRaWAN is a protected trademark of Semtech. https://lora-
alliance.org/ - Accessed April 2022

2. https://www.raspberrypi.com/ - Accessed April 2022

3. Our changes are included in Fides and available open source under
the MIT license: https://gitlab.rlp.net/l.creutz/fides

tion. The approach can also be applied to other applications
and may be used as a blueprint to utilize LoRaWAN in an
equivalent way in other domains.

A basic principle of Fides is that it is based on natural
language, so any user, regardless of their technical expertise
in programming and smart contracts, can use it to create
digital agreements. Fides implements the Cypher Social

Contracts [2] concept and focuses on self-organization,
decentralization and social participation. The contracts in
Fides are derived from templates and then, one by one, each
responsible party confirms the tasks defined in the template
to change the state of a contract inside the network. Any
task can be human readable, which also allows non-technical
experts to use the framework.

We begin in Section 2, where we explain our concept in
more detail and how it differs from related works. In Section
3 we explain some core principles of Fides, describe our
abstraction to use the system with LoRaWAN and discuss
our experimental setup including a performance evaluation.
Section 4 goes into detail about the protocol, its design
principles and introduces a scenario that illustrates the com-
munication and the protocol. In the following Section 5,
we describe our approach to the middleware in order to
translate the messages for the respective users in a secure
manner. In the last section, we summarize our work and the
components presented, and describe future efforts to apply
the results to other device types and further evaluate the
system in additional experiments in offline regions.

2. Contribution and concept

LoRaWAN is used for applications in the IoT sector,
where it is frequently used to transmit sensor values. The
authors in [3] provide a systematic review of 71 LoRaWAN
use cases. The primary areas of application of the works
studied were in the fields of smart cities, farms and grids,
as well as healthcare. In general, it is primarily about
monitoring sensor values in different contexts, with appli-
cations built upon the data. Some works such as [4] and
[5] implement message-based services, however they are
not part of The Things Network [6] (TTN) we use. To
the best of our knowledge, no work addresses the usage of
LoRaWAN as an abstraction to use an existing application.



Figure 1. Overall structure of the system.

We understand an abstraction as the active participation in
a system through LoRaWAN. To illustrate this, we look at
[7], where a smart parking system was implemented that
also uses LoRaWAN. As in other works, LoRaWAN is used
to transmit sensor data describing the respective state of
the parking space. However, LoRaWAN cannot be used to
reserve parking spaces, which would be possible with our
approach. Furthermore, only a few papers exist that bring
LoRaWAN and (smart) contracts together. One paper [8]
tries to aggregate pollution measurements from LoRaWAN
sensors in combination with the Ethereum Blockchain. The
work uses LoRaWAN devices and gateways with Ethereum
light clients for this purpose. The work can be seen as a
first demonstration, however, there are still open research
questions to deploy this kind of system in the real world.4

Often the low data rate of LoRaWAN is problematic
to be able to offer complex functions within an applica-
tion, which would require significantly more data to be
transmitted than the fair access policy [9] of The Things
Network [6], which limits the uplink airtime to 30 seconds
per day/device and the number of downlink messages to ten,
and LoRaWAN in general [10] allows. Our contribution is
novel in terms of user interaction by using LoRaWAN to
participate in cyber-physical contracts. We have extended the
implementation of Fides with an abstraction for LoRaWAN,
which makes it possible to establish digital contracts in
offline regions and thus enable digital participation and self-
organization. Our approach, illustrated in Fig. 1, consists of
translating LoRaWAN data into Fides transactions by our
middleware and sending those transactions to a decentralized
Fides network in the name of the user. We consider offline
regions where users with Raspberry Pis and the abstrac-
tion for Fides communicate over the air with LoRaWAN
gateways. Here, the gateways themselves, but not the users,
have an active Internet connection. The LoRaWAN gateways
forward the received messages to The Things Network, from
where they are transmitted to our middleware. The middle-
ware translates the messages and performs the respective
action on behalf of the users within the Fides network. Other
institutions/users are directly connected to the Fides network

4. The smart contract code provided in [8] for example does not check if
the caller is the owner of the contract which allows anyone to manipulate
the pollution limits to be monitored.

and receive the messages as if they originated from the
offline devices themselves. In order to obtain information
from the Fides network, the middleware can also transmit
messages to the gateways via The Things Network when
requested by the users, which are then sent back to the
devices in the offline region using LoRaWAN downlink mes-
sages. Individual data is managed via per-user placeholders
in the middleware, which replaces the placeholders with the
user-specified values within the Fides transactions. In order
to transmit information back to the LoRaWAN device, we
also send targeted downlink information to the respective
device via the middleware, for example to inform about
the updated state of a contract. The downlink information
contains only general information about the contracts and
templates, not the entire Fides transactions because of the
limited bandwidth [9], [10]. The extent to which the sys-
tem is nevertheless useful despite this limitation will be
addressed in Section 4.4. Now that we have briefly sketched
our approach, the following sections describe the different
components and explain both the necessary steps to translate
from Fides to LoRaWAN messages and how the middleware
operates.

3. Fides with LoRaWAN

In this Section we present our abstraction to be able to
use Fides with LoRaWAN. For this purpose, we first discuss
core concepts of Fides so that the general procedure of the
abstraction is more comprehensible. We then describe the
abstraction and the hardware for which it was implemented
and based on which a performance measurement was per-
formed.

3.1. Fides

Fides [1] is the reference implementation and extension
of the stated Cypher Social Contracts protocol [2] that
allows to create digital contracts using natural language and
focuses on security and privacy of the users. The contracts
are stored inside open, distributed peer-to-peer networks. In
order to describe how we can create digital contracts in
offline regions using only LoRaWAN, we need to explain
some previously mentioned core elements of Fides in more
detail:

Templates. Inside Fides, a template is the base for any con-
tract and defines the contents of the agreement. It contains
the task definitions, validators assigned to a specific task,
who receives the contract (the user that created the template)
and more information that is used by the software. Because
of the limited bandwidth [9], our protocol cannot support
the creation of templates, only the creation of contracts. We
also assume that the creators of templates have a regular
Internet connection, as it would not be functional to obtain
contract offers via LoRaWAN due to the same limits [9].
Any task to a template is a regular string object that can



TABLE 1. ELEMENTS OF A TEMPLATE INSIDE FIDES

Element Description

HOj
Hash of the template (SHA256)

Kj,P Public key of user j

B Description of the template

T List of tasks

R Mapping of who is responsible for which task

rM Merkle root hash of the tasks

V Validators assigned to the tasks

TABLE 2. ADDITIONAL ELEMENTS OF A CONTRACT INSIDE FIDES

Element Description

HCi,j
Hash of the contract (SHA256)

Ki,P Public key of user i

N Number of tasks

be human readable. A template Oj , created by user j, is
defined as:

Oj = (HOj
,Kj,P , B, T,R, rM , V ) (1)

Table 1 explains the elements of a template in more detail.
The owner of the template has the option to either accept or
reject the contracts that refer to that template. A template is
either in an ACTIVE or INACTIVE state, thus the owner can
prevent a template from existing indefinitely, which allows
the implementation of time-limited offers and services.

Contracts. A contract is always derived from a template,
therefore contains several references to it, and is defined as:

Ci,j = (HCi,j
,Ki,P ,Kj,P , N,R, rM ,HOj) (2)

The contract is an agreement between two parties i and j,
where i creates the contract and j manages the template.
Every contract is in a state which can be implicitly changed
by transactions. Within Fides, so-called full nodes take care
of the documentation of this state in the network. States for
a contract, which are self-explanatory, are OFFER, LIVE,
REJECTED and FINISHED. In addition to the definitions
introduced, both template and contract also contain a nonce
to ensure the uniqueness of the object. Table 2 explains the
elements of a contract that were not introduced before. In
order to create a contract, the user must have access to the
template that should be used. The contract creation process
can be boiled down to the following steps:

1) Load the template.
2) Set the elements that are reused from the template

inside the contract object.
3) Create a random nonce to ensure the hash of the

contract is unique.
4) Add the contract creators public key to the contract.
5) Calculate the hash of the contract.
6) Create a set of ephemeral public/private key for that

contract.
7) Perform a check of the contract in combination with

the template.

Inside Fides the hash of a contract between two parties

i and j is calculated as follows:

HCi,j
= SHA256(Ki,P⊕Kj,P⊕N⊕rM⊕HOj

⊕R⊕nonce)
(3)

⊕ denotes the concatenation. The important part to create
a unique contract hash is the value of the cryptographic
nonce, which is a 4-byte unsigned integer value. We use
this approach because it allows us to only transmit a subset
of information and re-create that same contract when trans-
lating between LoRaWAN messages and Fides given that
the public key Ki,P is the same for that contract and the
template is present at the middleware.

3.2. Fides LoRaWAN abstraction

We have extended the implementation of Fides with a
lora command to create a clear separation between the core
components and our LoRaWAN abstraction for Fides. In
the following, we will discuss the important components
and take simple functionalities like saving the contracts as
given.

Hardware and connection. First, it must be ensured that
the hardware used can connect to the LoRaWAN network.
For this purpose, a component manages the configuration
of the user, such as application keys, application/device

EUIs or data rate to establish a connection. When Fides is
started, the abstraction securely connects to the LoRaWAN
network once by Over-the-Air Activation (OTAA) [11]. If
a connection cannot be established, or it is not possible to
transmit a LoRaWAN message while using the system, the
user is notified immediately so that another attempt can be
made.

Contracts. Another main component is a class for man-
aging contracts that are processed via LoRaWAN. This is
based on the core contract component of Fides and contains
adaptations that implement the protocol described in Section
4. An important extension are so called blind operations,
which we introduced to save bandwidth. Blind operations
can be used to change the state of a contract locally and to
pretend the new state without obtaining it via LoRaWAN
downlink. This approach is particularly helpful when users
can observe tasks of the contract in real life. For example, if
the contract describes a delivery that has been received by
the user, the user does not have to obtain this information
over the network and use the limited bandwidth for it.

Accounts. When we create a contract, we assume that the
user has access to the private key, whereas this is not
necessary within the abstraction, since we only need to
know the public key Ki,P that belongs to the private one
maintained at the middleware in order to create the same
contract hashes, which increases the security of IoT devices.
While contracts could be created by accessing the hardware,
there is no direct access to the private key and the API
key used within The Things Network [6] to authenticate
at the middleware. Furthermore, the current placeholders
can only be retrieved via the middleware. If an attacker has



access to the LoRaWAN device, the context of use cannot
be classified. The used templates can also be obfuscated,
so that the use case is only known to the parties involved
and any attackers cannot draw conclusions via the metadata.
Thus, the overall security of Fides and the integrity of the
data, given that the devices are appropriately monitored and
unauthorized access is detected, is not compromised.

Templates. In order to be able to create contracts at all,
the templates must be available on the respective device as
well as on the middleware. The templates do not necessarily
have to be obtained via the Internet and can therefore also
be transferred offline to the devices. For users who cannot
bring their devices to the Internet in any way, the middle-
ware provider can act as a service provider to provide the
LoRaWAN hardware, the Fides software, and the templates
offered there. We address this in more detail in Section 4.4.

Additional implementations. In addition to the components
already described, the abstraction also contains functions
for converting from and to LoRaWAN messages. For this
purpose, we defined the protocol messages using protobuf5,
which is already used inside the core components of Fides.
To make the system more understandable to the users, the
abstraction also displays the number and amount of data sent
and received per usage. This makes it possible to understand
why, after a certain number of messages, no more data can
be sent or received without waiting long enough.

Integration with Fides. The new functions of the abstrac-
tion should seamlessly integrate into the core system of
Fides, so that it is easily possible to switch to the regular
configuration, provided that an Internet connection becomes
available on the devices. For example, to import all contracts
that were created through the middleware via LoRaWAN, it
is enough to execute the following fds6 commands:

fds lora contract list \

| xargs -n 1 fds contract fetch

In order to be able to access the encrypted data, the tem-
porary keys, which were generated in the sixth step during
contract creation by the middleware, must be imported to
be able to manage the contract locally from now on.

Differences to Fides. The implementation of the abstraction
differs from the core system Fides in several points, which
will now be discussed. Since the transactions cannot be
obtained in a whole over LoRaWAN, the implementation
of the contracts only documents their general information,
i.e., their state, the hash of the contract, which task was
processed, and how they need to be addressed over Lo-
RaWAN. Further, communication only takes place through
a direct action of the users. In order not to exhaust the
already low bandwidth too quickly, no background updates
of the contracts are performed. We only check new downlink

5. https://developers.google.com/protocol-buffers - Accessed April 2022

6. fds is the command line interface of Fides

messages when users are actively sending uplink messages,
which is the general approach in LoRaWAN [10]. Fur-
thermore, the abstraction extends Fides with an alternative
form of transactions that send the protocol’s messages to
the communication daemon fidesd [1], from where they are
translated and transmitted to the network.

3.3. Hardware configuration

Our implementations were evaluated and tested on a
Raspberry Pi 3 and 4. For our LoRaWAN abstraction of
Fides we used the ”IoT LoRa Raspberry Pi Node pHat”
from PiSupply7 with the corresponding RAK811 library8

for firmware version 2. Further combinations of hard-
ware/software/firmware could be easily integrated within
the abstraction. The module uses (due to our location in
Europe) the channel frequency of 868Mhz [12]. We use
data rate 5 as the default within the abstraction, which
corresponds to a spreading factor of 7 [12]. According to
the airtime calculator [13], this corresponds to a number of
486 messages per 24 hours with an application payload of
11 bytes, which is the largest message in our protocol that
is used to create a contract. Within Fides, the minimum size
of a transaction to publish a contract is about 650 bytes.
The largest possible payload of a LoRaWAN message at
the selected data rate is, according to [13], 222 bytes. Thus
we would need at least 3 uplink messages per contract and
can create a maximum of 27 contracts per day. Other data
rates additionally allow much smaller payloads, for example
data rate 3 allows 128 bytes and data rate 0-2 only 64 bytes
[13]. Furthermore, if we were to obtain whole transactions
via downlink, we could not control the size of those. Fides
limits the maximum transaction size to 1 MB [1], which
means that a transaction from another party with this size
would have to be split into almost 5000 downlink messages.

3.4. Performance evaluation

In order to show the performance of Fides in general
and our abstraction, we performed a measurement in which
we created and processed ten contracts. During this period,
about 50 uplink messages (400 bytes of data) and about 35
downlink messages (270 bytes of data) were sent. Although
the actual downlink limit of TTN [9] was exceeded by a
factor of 3.5 in our experiment, the limit was not enforced.
The measurement only shows a short period, but it shows the
low resource consumption in general, which would not be
higher in a bigger timespan, since the system only transmits
data through active sending by users and does not use
background updates to not reach the strict limits of TTN [9]
too quickly. We measured CPU and RAM utilization of our
Raspberry Pi 4 with 4GB of RAM in a time span of about
half an hour. Our results are shown in Fig. 2. We performed
the measurement with top9 and recorded CPU and RAM

7. https://github.com/PiSupply/IoTLoRaRange/ - Accessed April 2022

8. https://github.com/AmedeeBulle/pyrak811 - Accessed April 2022

9. https://man7.org/linux/man-pages/man1/top.1.html - Accessed April
2022



Figure 2. Overall CPU and RAM utilization of the Fides process during
our experiment. The average CPU usage was 0.2% and RAM usage 0.7%.

usage in 1 second intervals. Spikes in the CPU usage were
caused by downlink information that did change the state
of the local contract objects. However, other downlink data
of similar type did not cause the CPU to spike that high.
The measurements are like those made in [1], where the
performance of Fides was analyzed for regular systems. Due
to the low average memory consumption (0.7%) and the
low average CPU load (0.2%), Fides is a resource efficient
solution for regions with limited infrastructure: it has a low
energy consumption, low memory usage, low processing
complexity and is efficient regarding the required data rates.

4. Fides LoRaWAN protocol

In order to allow the usage of Fides in combination
with LoRaWAN, we need to implement a small protocol
so that our messages can be translated to Fides transactions
without creating too big uplink messages that would conflict
with the fair access policy [9] of the used The Things
Network [6]. The goal of the protocol was to minimize the
message size while still being able to recover from errors by
transmitting larger messages in rare occasions. In general,
it is recommended that the payload per message does not
exceed 12 bytes [14]. The largest message to be sent by our
protocol is usually 11 bytes. The average size is 6 bytes for
uplink messages and 7 bytes for downlink messages.

4.1. Available commands

We use the first byte of the message for the command.
Here we consider a bidirectional communication, so the
command is not only an instruction from the client to the
middleware, but also the response of the middleware in
the form of a downlink message. Table 3 describes the
possible commands and their arguments of any LoRaWAN
transaction inside our abstraction.

TABLE 3. PROTOCOL COMMANDS

Command Arguments Description

00 - Ping message

01 Nonce (4 byte) Create a new contract offer

02 - Confirm a task (empty)

03 Placeholder (1 byte) Confirm a task (placeholder)

04 - Get the state of a contract

05 - Get the state of a template

06 - Contract is an offer (downlink)

07 - Contract hash abbreviation is
ambiguous (downlink)

08 - Template is active (downlink)

09 - Template is inactive (downlink)

0a - Template hash abbreviation is
ambiguous (downlink)

0b - Delete contract at middleware

0c - Contract not found (downlink)

0d - Template not found (downlink)

0e Current task (1 byte) Contract is live (downlink)

0f - Contract was rejected (down-
link)

10 - Contract is finished (downlink)

4.2. Addressing objects

Because we are not able to continuously send 32 bytes
of data (the size of a SHA256 hash) to identify an object
inside Fides, we only send a subset of this hash (the first
6 bytes). This approach is similar to the behavior of git
when addressing commits with an abbreviation of the hash
[15]. The object identifier is always the last element of
a transaction, which allows us to send bigger messages
(without including the size of the message) if any error is
reported from the middleware service. The protocol allows
smaller messages up to the point where conflicts arise due to
ambiguities that can be resolved by sending a larger portion
of the identifier.

4.3. Example scenario

In order to understand the communication, we introduce
the following scenario and look at the creation and pro-
cessing of a contract using an example. We assume that
two tasks are defined in the template. The first task must be
confirmed by the party i that creates the contract Ci,j and the
second task by the party j that manages the template Oj . We
further assume that party i, which creates and processes the
contract through LoRaWAN, has access to the middleware.
The registration with the middleware is described in Section
5. The necessary steps to be performed amount to:

Template import. The template can be imported either
using the transaction data offline (e. g. on a USB drive)
or by using the device with Fides in an online region.

Contract creation. The imported template is now used to
derive the contract Ci,j . For this purpose, the value of the
automatically generated nonce determines the hash of the
contract. Accordingly, this nonce must be transmitted to the
middleware so that the same contract is created there that



was created locally. We assume nonce = 4075087775 and
Template Oj = c40164f1c121[...]. The nonce, converted in
hex format (big endian) is f2e4e79f, which results in the
following uplink message:

01 f2e4e79f c40164f1c121

This results in HCi,j
= 1f9bdd63faed[...]10 which is also re-

created at our middleware. After the middleware has created
the contract and published it on behalf of the user, the
contract is in state OFFER and must now be either accepted
or rejected by the other party. For our example we use a
blind operation and change the state of the contract to LIVE

without any further up- and downlink messages.

Task confirmation. In order to be able to confirm a contract
step using LoRaWAN, we distinguish between two proce-
dures:

1) Confirmation without user input (empty).
2) Confirmation with data (placeholder).

Thus, either no input data or the value of a previously
defined placeholder, which can be managed per user on the
middleware, is used. There are up to 256 placeholders (1
byte) available per user, which can be arbitrarily chosen.
We assume for our example that the party i passes the first
placeholder as content into the confirmation of the task:

03 00 1f9bdd63faed

Contract updates. In order to update a contract, user i

can either use a blind operation and assume that the action
of the other party j was performed, or send a dedicated
uplink message to receive the newest state of the contract
via downlink through the middleware. In our example the
uplink payload would be:

04 1f9bdd63faed

At this point we preempt the data transfer screenshot that
follows later and assume the following as the downlink
message:

0e 02 1f9bdd63faed

The middleware reported that our contract is in state LIVE

and the second task, which party j is responsible for in
our example, needs to be confirmed. This underlines that
the blind operation did work and we could save up- and
downlink bandwidth. Any state of a contract, which will
be provided via downlink information by our middleware,
needs at most two bytes, where the first byte describes the
state and the second (on a live contract) the current task.
Middleware feedback in the form of downlink is always
considered the ultimate truth and overrides the current local
state of the object, including any wrong blind operation.

10. The hash value refers to a real-world example, which will be em-
phasized later by Fig. 3, Fig. 4 and Fig. 5 that show the middleware and
The Things Network data.

4.4. Limitations

As already explained, we can’t receive the entire trans-
action from the other party in a reasonable way due to the
limits in bandwidth [9]. This also includes text-inputs of
the other party from the agreement. In our opinion, it is
also more important for users in offline regions to be able
to send more data than to receive it, in order to increase their
own digital participation. However, since the use of Fides
with LoRaWAN is a special case for a small set of users, the
templates for such services can also be tailored for the usage
in such a region. For this purpose, a uniform but unofficial
format can be specified, which is adapted by many different
templates. For example, an overall format could be defined
for how addresses must be transmitted. With the possibility
of validators in the templates, not only can automation take
place on the part of all service providers, but all users of the
LoRaWAN abstraction would only need a single placeholder
to transmit their address data, regardless of which template
they want to use. The biggest bottleneck is the limit of ten
downlink messages due to the fair access policy [9]. We
would like to reinforce that it was possible to obtain more
than ten downlink messages in our experiments. However,
since this contradicts the official specification and may be
enforced by the network in the future, we have to assume the
limit for the design of our protocol. We do not push this limit
locally, so users can try to retrieve more than ten downlink
messages. The possibility of blind operations additionally
compensates for the strict downlink limit. Nevertheless, it
should still be possible to create and process many contracts,
despite the given limitations.
A much bigger problem would be users who are unable to
connect to the Internet with their devices, for example in
other regions, in order to be able to install the software and
obtain the templates in the first place. The problem could
be solved by service providers offering both hardware and
software preconfigured. On the hardware side, the devices
can thus be prepared for the use of LoRaWAN with TTN
and the middleware. On the software side, Fides and the
templates offered on the middleware can already be installed
on the devices to use the system immediately in the offline
region.

5. Middleware

Our middleware implements the translation of the pre-
viously introduced protocol and acts on behalf of the users.
The specification is part of the open source release of the
LoRaWAN abstraction for Fides and can be used within any
context. The actual middleware does not necessarily have
to be developed for multiple users. In our context, we run
the middleware as an extension of a marketplace for local
services where verified service providers create listings that
reference their templates inside the Fides network. In order
for the middleware to correctly translate the LoRaWAN
messages, it must also be aware of those templates. We solve
this by using a shared Fides instance between marketplace
and middleware.



5.1. The Things Network integration

All our hardware is connected to The Things Network

(TTN) [6], which provides an open source LoRaWAN net-
work server with gateways all around the globe. Within
TTN applications, so-called integrations11 can be used to
process the transmitted data from the devices. Within our
middleware we use the webhook integration to forward the
uplink data and send downlink messages to the devices.
Each webhook is bound to an application in which the
LoRaWAN devices of a user are registered. This allows
the assignment of different devices to the respective appli-
cation. To make it easier for regular users, we use TTN’s
API12 directly to create our webhook automatically within
the specified application. For this purpose, our users must
provide the following data during registration:

• Fides private key: The corresponding private key
to the public key Ki,P that the middleware should
control in the name of the user i.

• LoRaWAN device: ID of the device.
• TTN access key: API key to access the TTN account

of the user in order to add our webhook and send
downlink data to the device.

• TTN application: The unique ID of the application
where the device is registered.

After the given information is validated the webhook is
created accordingly. In addition, an API key is generated,
which is sent by the webhook to identify the user within
our middleware.13 This API key can also only be used
for the public endpoint that is used by the webhook. It
is not possible to use it to obtain information about the
placeholders, past messages, or to log in to the middleware
to access the temporary keys. Fig. 3 shows the information
of a registered user that is logged in inside our middleware.

5.2. Translate transactions from LoRaWAN to

Fides

The addressed webhook forwards all LoRaWAN mes-
sages through the integration to a public endpoint of the
middleware, which is authenticated by the API key that
was generated upon webhook creation. Then we verify
that the message is from the device that the user specified
during the registration. This ensures that several devices
can exist within the same application, but that not all of
them must be connected to Fides. All user private keys are
stored encrypted within a database and are not part of the
local Fides instance, instead they are dynamically loaded
at runtime to process the respective request. In order to
work on the received data in a reasonable way, we first
convert the received payload into bytes, which are translated

11. https://www.thethingsnetwork.org/docs/applications-and-
integrations/ - Accessed April 2022

12. https://www.thethingsindustries.com/docs/reference/api/ - Accessed
April 2022

13. When creating the webhook, the HTTP header X-API-KEY is added
with the automatically generated API key for the respective user.

Figure 3. Main overview for any registered and logged in user. It contains
the username, the added information of TTN properties, the used device
and the public key of the Fides account that is managed at the middleware.
Also, we display the created contracts so that the user can delete them from
our middleware and download the ephemeral keypairs that were generated
when creating the contracts.

by the abstraction of Fides into a protobuf message that
is processed afterwards. To understand the creation of a
contract, let us follow the example from before and look
at the creation of the contract Ci,j from the middleware’s
point of view. An overview of the transmitted and received
data of the LoRaWAN device can be seen in Fig. 4. Fig. 5
shows all uplink data of the device and the translation by the
middleware to get a simple overview of the sent data within
the application context. The first message received describes
the creation of a new contract, as already illustrated before.
To create the contract on behalf of the user, the middleware
performs the following actions:

1) Template check: If the template is unknown, inac-
tive or if the hash is ambiguous, respond with the
corresponding downlink message.

2) User identification: Load the private key that
matches the sent API key from the webhook.

3) Contract creation: Create the contract in the name
of the user and use the same nonce.

4) Contract publication: Publish the contract in the
name of the user. If an error occurs, the contract is
immediately deleted locally and republished by the
user after realizing that a request regarding the state
of the contract would indicate that the contract is
not found.

Now that a contract has been created and published,



Figure 4. The Things Network live data of the LoRaWAN device. Every
up- and downlink message is shown (from bottom to top).

we see in Fig. 4 that the next uplink message is already a
confirmation of the contract step. This would not be possible
in the regular case, since each contract offer must first
be accepted by the other party. In our case we used an
automated template where we know that our contract will be
accepted, and thus used a blind operation to save bandwidth.
In order for the middleware to confirm a contract step, it
must perform the following tasks:

1) User identification: Load the private key that
matches the sent API key from the webhook.

2) Load contract: Load all contracts that could be
referenced by the hash abbreviation within the mes-
sage. For each potential contract, check if it is from
the same user identified in the first step. If no con-
tract was found, or the given hash abbreviation is
ambiguous, reply with the corresponding downlink
message.

3) Task confirmation: Confirm the current task on
behalf of the user. If a placeholder is used, replace
the value within the transaction.

The next message is a request to receive the current state
of the created contract. This is also reflected in Fig. 4
where we can observe that immediately after our uplink
was sent, the middleware scheduled a downlink response
that contains the state of the object. As described earlier
we received the information that the contract is still live
and the current task that needs to be confirmed is task two.
In our example scenario that task was the last task of the
contract and the other party was responsible to confirm it,
therefore we waited and sent the exact same message to
query the state of the object again and received different
downlink data, indicating that the contract is now finished
and the other party did confirm the last task. The final uplink
message then instructs the middleware to delete the finished

Figure 5. Uplink messages and translations (top to bottom) for the user at
the middleware.

contract. In our experiments, the downlink was always sent
immediately, which means that one can obtain the down-
link message on the device immediately after the uplink
message. Nevertheless, it could happen that the downlink
only becomes known to the device with delays. The user
can simply send an empty ping message to the middleware
that allows the device to check for new downlinks locally
after using only a single byte of uplink data for the ping
command.

5.3. Additional functions

In addition to the actual function of translating the
messages, our middleware includes other useful functions.
On the one hand, registered users can specify their own
placeholders directly on our platform. Here, a simple view
compares the respective placeholders with the values to be
replaced. On the other hand, users can view all their sent
messages via the message log. Messages that are only tem-
porarily available in the TTN live data view are stored on our
server permanently. In addition, we list the created contracts
and provide the possibility to download the temporary keys
per contract and delete the contract in our Fides instance
directly from the middleware which can be seen in Fig. 3.

6. Conclusion and future work

We have presented our approach on how to create a
complete system that allows LoRaWAN to be deployed
in higher application areas. We gave a brief overview of
Fides and what is necessary to abstract the creation of
contracts with the smallest possible amount of data. In the
following, we presented our protocol with several examples



and explained design decisions of the protocol that allow us
to make a complex use case like cyber-physical contracts
possible in offline regions. It is worth mentioning that the
protocol can exist in the real world and it is not just an
edge case demonstration, as the regular message size does
not exceed 11 bytes, allowing a large number of uplink
messages per day per device. Any conflicts in addressing
objects can be resolved by the protocol and the developed
abstraction for Fides by allowing the message to grow dy-
namically if necessary. In addition to the abstraction and the
protocol itself, we then described our approach to implement
a middleware, which translates the LoRaWAN messages
accordingly and acts on behalf of the users to perform the
actions within the Fides network. Our implementation, as
well as the specification of the middleware are open source
available and can therefore be used in any project. In the
future, we will evaluate our implementation in further exper-
iments, which should reinforce the application capabilities
in real-world environments. Furthermore, we aim to bring
our protocol to more low-level devices like microcontrollers
that do not support Fides.
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