Fachbereich Umweltplanung / Umwelttechnik

Modulhandbuch

Wirtschaftsingenieurwesen / Umweltplanung

Bachelor of Science

Stand Oktober 2019
Inhaltsverzeichnis

1 Curricula ... 1
 1.1 Studienbeginn im Wintersemester .. 1
 1.2 Studienbeginn im Sommersemester ... 2

2 Pflichtmodule .. 3
 2.1 Analysis ... 3
 2.2 Informatik für Wirtschaftsingenieure .. 4
 2.3 Physik I ... 5
 2.4 Grundlagen der Chemie und Umweltchemie der Elemente ... 7
 2.5 Technische Darstellung und Grundlagen der Konstruktion .. 8
 2.6 Umweltrecht ... 10
 2.7 Grundlagen ökonom. Handels und betriebsw. Methoden ... 11
 2.8 Lineare Algebra und Statistik .. 14
 2.9 Thermodynamik und physikalische Chemie .. 15
 2.10 Organische Chemie und Grundpraktikum Chemie ... 17
 2.11 Fachsprache Englisch ... 18
 2.12 Grundlagen der Mechanik und Maschinenelemente .. 20
 2.13 Fachprojekt mit Präsentation .. 21
 2.14 Grundlagen Biologie und Integrative Bioprozesse ... 23
 2.15 Angewandte Elektrotechnik ... 24
 2.16 Grundzüge Vertrags- und Vergaberecht .. 25
 2.17 Betriebliches Rechnungswesen ... 27
 2.18 Finanzierung, Investition und Management von Projekten .. 29
 2.19 Energietechnik .. 32
 2.20 Grundlagen Verfahrenstechnik ... 33
 2.21 Marketing und Kommunikation ... 34
 2.22 Produktionslogistik .. 36
 2.23 Umwelt- und Stoffstrommanagement ... 37
 2.24 Interdisziplinäre Projektarbeit (Bachelor) ... 39
 2.25 Praktische Studienphase .. 40
 2.26 Bachelor-Thesis und Kolloquium ... 41

3 Wahlpflichtmodul Umwelttechnik (Vertiefungsrichtung Umwelttechnik) 41
 3.1 Technische Akustik / Schallschutz [WP] .. 44
 3.2 Lärmessungen und Lärmberechnungen [WP] ... 45
3.3 Instrumentelle Analytik (Umweltanalytik) ... 46
3.4 Boden- und Grundwassersanierung .. 48
3.5 Abwassertechnik (WP) ... 49
3.6 Brennstoffzellen- und Batterietechnik ... 50
3.7 Luftreinhaltung (WP) ... 51
3.8 Grundlagen Umweltmonitoring (WP) ... 52
3.9 Toxikologie .. 54

4 Wahlpflichtmodul Umwelttechnik (Vertiefungsrichtung Energiemanagement) 56
4.1 Windenergie ... 56
4.2 Solar Energy ... 57
4.3 Bioenergie ... 59
4.4 Netztechnologie .. 60
4.5 Umweltinformationssysteme .. 62
4.6 Brennstoffzellen- und Batterietechnik ... 64
4.7 Hauptfachseminar Regenerative Energiesysteme I .. 64
4.8 Energieeffizienz in der Raumlufttechnik (WP) ... 65
4.9 Energiewirtschaftsrecht/Recht der Erneuerbaren Energien 66

5 Wahlpflichtmodule ... 69

Bitte beachten Sie, dass in einigen Fällen die Modulverantwortlichen nicht den Lehrenden des aktuellen Semesters entsprechen. Die Lehrenden des jeweiligen Semesters entnehmen Sie bitte dem semesteraktuellen Stundenplan.

Abkürzungsverzeichnis: Bachelor-Studiengänge

<table>
<thead>
<tr>
<th>Angewandte Informatik</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio- und Pharmatechnik</td>
<td>O</td>
</tr>
<tr>
<td>Bio- und Pharmatechnik (dual)</td>
<td>H</td>
</tr>
<tr>
<td>Bio-, Umwelt- und Prozess-Verfahrenstechnik</td>
<td>V</td>
</tr>
<tr>
<td>Erneuerbare Energien</td>
<td>G</td>
</tr>
<tr>
<td>Maschinenbau – Produktentwicklung und Technische Planung</td>
<td>T</td>
</tr>
<tr>
<td>Medieninformatik</td>
<td>M</td>
</tr>
<tr>
<td>Physikingenieurwesen</td>
<td>P</td>
</tr>
<tr>
<td>Produktionstechnologie (dual)</td>
<td>S</td>
</tr>
<tr>
<td>Sustainable Business and Technology</td>
<td>L</td>
</tr>
<tr>
<td>Umwelt- und Wirtschaftsinformatik</td>
<td>F</td>
</tr>
<tr>
<td>Umwelt- und Wirtschaftsinformatik (praxisorientiert)</td>
<td>J</td>
</tr>
<tr>
<td>Wirtschaftsingenieurwesen/ Umweltplanung</td>
<td>U</td>
</tr>
</tbody>
</table>
Curricula

1.1 Studienbeginn im Wintersemester

Wirtschaftsingenieurwesen/Umweltplanung

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienmodul</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Semester (WS)</td>
<td>Analysis</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1. Semester (WS)</td>
<td>Informatik für Wirtschaftsingenieure</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1. Semester (WS)</td>
<td>Physik I</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1. Semester (WS)</td>
<td>Grundlagen der Chemie und Umweltchemie der Elemente</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1. Semester (WS)</td>
<td>Technische Darstellung und Grundlagen der Konstruktion</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1. Semester (WS)</td>
<td>Umweltrecht</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1. Semester (WS)</td>
<td>Grundlagen ökonomischen Handelns und betriebswirtschaftliche Methoden</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2. Semester (SS)</td>
<td>Lineare Algebra und Statistik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. Semester (SS)</td>
<td>Thermodynamik und physikalische Chemie</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. Semester (SS)</td>
<td>Organische Chemie und Grundpraktikum Chemie</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. Semester (SS)</td>
<td>Fachsprache Englisch</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. Semester (SS)</td>
<td>Grundlagen der Mechanik und Maschinenelemente</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2. Semester (SS)</td>
<td>Umweltrecht</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>2. Semester (SS)</td>
<td>Grundlagen ökonomischen Handelns und betriebswirtschaftliche Methoden</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Summe</td>
<td>24</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>3. Semester (WS)</td>
<td>Fachprojekt mit Präsentation</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3. Semester (WS)</td>
<td>Grundlagen Biologie und Integrative Bioprozesse</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3. Semester (WS)</td>
<td>Angewandte Elektrotechnik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3. Semester (WS)</td>
<td>Wahlpflichtmodul</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3. Semester (WS)</td>
<td>Betriebliches Rechnungswesen</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3. Semester (WS)</td>
<td>Finanzierung, Investition und Management von Projekten</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>24</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4. Semester (SS)</td>
<td>Energietechnik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4. Semester (SS)</td>
<td>Grundlagen Verfahrenstechnik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4. Semester (SS)</td>
<td>Marketing und Kommunikation</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4. Semester (SS)</td>
<td>Produktionslogistik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4. Semester (SS)</td>
<td>Wahlpflichtmodul „Umwelttechnik“</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4. Semester (SS)</td>
<td>Betriebliches Rechnungswesen</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4. Semester (SS)</td>
<td>Finanzierung, Investition und Management von Projekten</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Summe</td>
<td>24</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>5. Semester (WS)</td>
<td>Umwelt- und Stoffstrommanagement</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5. Semester (WS)</td>
<td>Interdisziplinäre Projektarbeit [Bachelor]</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5. Semester (WS)</td>
<td>Wahlpflichtmodul</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5. Semester (WS)</td>
<td>Wahlpflichtmodul</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5. Semester (WS)</td>
<td>Wahlpflichtmodul „Umwelttechnik“</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5. Semester (WS)</td>
<td>Wahlpflichtmodul „Umwelttechnik“</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Summe</td>
<td>24</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>6. Semester (SS)</td>
<td>Praktische Studienphase</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>6. Semester (SS)</td>
<td>Bachelor-Thesis und Kolloquium</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Summe</td>
<td>0</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Insgesamt</td>
<td>120</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>
1.2 Studienbeginn im Sommersemester

<table>
<thead>
<tr>
<th>Wirtschaftsingenieurwesen/Umweltplanung (Sommerstarter)</th>
<th>SWS</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Lineare Algebra und Statistik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Fachsprache Englisch</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Grundlagen der Mechanik und Maschinenelemente</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Grundlagen Verfahrenstechnik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Umweltrecht</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Wahlpflichtfach</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Summe</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>Informatik für Wirtschaftingenieure</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Physik I</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Grundlagen der Chemie und Umweltchemie der Elemente</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Technische Darstellung und Grundlagen der Konstruktion</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Grundlagen der Biologie und Integrative Bioprozesse</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Umweltrecht</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Grundlagen ökonomischen Handelns und betriebswirtschaftliche Methoden</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>Thermodynamik und physikalische Chemie</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Organische Chemie und Grundpraktikum Chemie</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Marketing und Kommunikation</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Fachprojekt mit Präsentation</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtmodul „Umweltechnik“</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Grundlagen ökonomischen Handelns und betriebswirtschaftliche Methoden</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Energietechnik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Summe</td>
<td>26</td>
<td>35</td>
</tr>
<tr>
<td>Grundzüge Vertrags- und Vergaberecht</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Angewandte Elektrotechnik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Umwelt- und Stoffstrommanagement</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtmodul „Umweltechnik“</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Betriebliches Rechnungswesen</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Finanzierung, Investition und Management von Projekten</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Summe</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Interdisziplinäre Projektarbeit [Bachelor]</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Produktionslogistik</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtmodul „Umweltechnik“</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Wahlpflichtmodul</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Finanzierung, Investition und Management von Projekten</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Betriebliches Rechnungswesen</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Summe</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Praktische Studienphase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bachelor-Thesis und Kolloquium</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Summe</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>
2 Pflichtmodule

2.1 Analysis

<table>
<thead>
<tr>
<th>Analysis</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: ANALYSIS</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
<tr>
<td>Dauer: 1 Semester</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung: Vorlesung</td>
<td>Präsenzzeit: 4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium: 105 h</td>
<td>Geplante Gruppengröße: 100 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: P, T, V, O, U, G, A, F, M,
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

Inhalte:
- Komplexe Zahlen
- Zahlenfolgen
- Funktionen
- Grenzwerte und Stetigkeit
- Differentialrechnung und Integralrechnung von Funktionen einer reellen Veränderlichen
- Differentialrechnung und Integralrechnung von Funktionen mehrerer reeller Variabler
- Taylor-Reihe

Lehrformen:
Vorlesung mit integrierter Übungsvertiefung und Nachbereitung durch Aufgabenblätter und ggf. Tutorien

Empfehlungen für die Teilnahme:
Sichere Beherrschung mathematischer Grundlagen

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer Klausur vergeben. Voraussetzung zur Teilnahme an der Klausur ist das Bestehen eines schriftlichen Testats, welches aus mehreren Teilen bestehen kann.

Umfang und Dauer der Prüfung:
Allgemeine Regelungen zu Art und Umfang sowie zur Durchführung und Bewertung

Stellenwert der Note für die Endnote:
5/165 [3,03 %] für 6-semestrige Studiengänge;
5/180 [2,78 %] für 7-semestrige Studiengänge;
5/150 [3,3 %] für dualen Studiengang Produktionstechnologie.

Häufigkeit des Angebotes:
Jedes Semester

Modulverantwortliche/r:
Prof. Dr. Rita Spatz, Dr. Stephan Didas, Dipl.-Math. Natalie Didas

Literatur:
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1, Vieweg Verlag Braunschweig/Wiesbaden (verschl. Auflagen)
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg Verlag Braunschweig/Wiesbaden (verschl. Auflagen)
- L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 3, Vieweg Verlag

2.2 Informatik für Wirtschaftsingenieure

Informatik für Wirtschaftsingenieure

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>INFOWIR</th>
<th>Workload (Arbeitsaufwand):</th>
<th>150 Stunden</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauer:</td>
<td></td>
<td></td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>a) Vorlesung</td>
<td>Präsentzeit:</td>
<td>4 SWS / 45 h</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td></td>
<td>b) Übungen</td>
<td>15 h</td>
<td>Geplante Gruppengröße:</td>
<td>80 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: U, G
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:
Bei Abschluss des Lernprozesses wird der/die erfolgreich Studierende in der Lage sein, die Bedeutung und den Nutzen der Informatik insbesondere von Standardsoftware in Wirtschaft und Verwaltung einschätzen zu können. Überdies ist der erfolgreiche Student in der Lage, Problemlösungen zu identifizieren, geeignete Algorithmen zu formulieren und diese in einer Programmiersprache zu implementieren.

Inhalte:
Die Veranstaltung vermittelt Grundlagen der Informatik und der Wirtschaftsinformatik. Es werden folgende Themen behandelt:
- Was ist Wirtschaftsinformatik?
- Bedeutung der Informatik in Unternehmen, Verwaltung und Gesellschaft
- Grundlagen der Informationsverarbeitung [Hardware, Software, Daten etc.]
- Rechnernetze u. Internet
- Klassifizierung von betrieblichen Informationssystemen und Beschreibung von Standardsoftware in Unternehmen
- Softwareentwicklung und Softwarequalität
- Algorithmisches Denken
- Möglichkeiten von Officessystemen für die individuelle Datenverarbeitung insbesondere für die Entwicklung von einfachen Anwendungen
- Sicherheit in der Informationstechnik und Datenschutz
- Die verschiedenen Themen werden in anwendungsorientierten, praktischen Übungen vertieft.

Lehrformen:
Vorlesung und Übung

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden aufgrund einer Klausur vergeben. Voraussetzung zur Teilnahme an der Klausur ist das erfolgreiche Bestehen von Übungsaufgaben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03%)

Häufigkeit des Angebotes:
Jährlich [im Wintersemester]

Modulverantwortliche/r:
Prof. Dr. Peter Fischer-Stabel

Literatur:
- Gumm, Sommer (2011): Einführung in die Informatik
- Weiterführende aktuelle Literatur zu den verschiedenen Themen wird in der Veranstaltung bekannt gegeben.

Physik I

<table>
<thead>
<tr>
<th>Physik I</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: PHYSIK I</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
<tr>
<td>Dauer: 1 Semester</td>
<td>Lehrveranstaltung:</td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td></td>
</tr>
</tbody>
</table>
Vorlesung: 4 SWS / 45 h 105 h 60 Studierende

Verwendbarkeit des Moduls:
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

Inhalte:
Die Vorlesung beschäftigt sich mit den Grundlagen der Physik und führt in die Mechanik, Schwingungen und Wellen ein.

Konkrete Inhalte sind:
- Kinematik der Punktmasse
- Dynamik der Punktmasse, Newtonsche Gesetze
- Arbeit, Energie, Energieerhaltungssatz
- Systeme von Punktmassen, Impulserhaltung, Stoßgesetze
- Starrer Körper, Massenträgheitsmoment
- Kinematische Beschreibung von Schwingungen
- Freie, ungedämpfte Schwingungen, Beispiele, Dgl. und Lösung
- Freie, gedämpfte Schwingungen, Beispiele, Dgl. und Lösung
- Erzwungene Schwingungen, Beispiele, Dgl. und Lösung
- Überlagerung von Schwellen
- Grundbegriffe der Wellenbeschreibung
- Wellenphänomene (Beugung, Interferenz)
- Geometrische Optik (Reflexion, Brechung, Totalreflexion)

Lehrformen:
Vorlesung mit integrierten Übungen

Empfehlungen für die Teilnahme:
Keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer Klausur vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang;
5/180 (2,78 %) für 7-semestrigen Studiengang;
5/150 (3,3 %) für dualen Studiengang D-PT

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)

Modulverantwortliche/r:
Prof. Dr. Kerstin Giering

Literatur:
- Bergmann L., Schäfer C., de Gruyter: Lehrbuch der Experimentalphysik, Band 1-3
- Gerthsen: Physik, Springer
- E. Hering, R. Martin: Physik für Ingenieure, VDI
- H. Heinemann et al.: Physik in Aufgaben und Lösungen, Hanser

2.4 Grundlagen der Chemie und Umweltchemie der Elemente

<table>
<thead>
<tr>
<th>Grundlagen der Chemie und Umweltchemie der Elemente</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>Workload (Arbeitsaufwand):</td>
</tr>
<tr>
<td>GRUMWCHE</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>Vorlesung</td>
<td>4 SWS / 45 h</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: P, U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelle Semester“)

Lernergebnisse/ Kompetenzen:
Die Studierenden haben fundamentale Kenntnisse über Atome und chemische Reaktionen.
Die Studierenden kennen die Eigenschaften von Elementen und chemischen Verbindungen aus ihrer Stellung im Periodensystem.
Die Studierenden betrachten bestimmte Produkte und technische Prozesse im Hinblick auf ihre Umweltwirkungen und -effizienz. Die Studierenden können die Inhalte im aktuellen, wirtschaftlich und wissenschaftlich relevanten und berufspraktischen Kontext einordnen. Die Studierenden erlangen mit diesen Kenntnissen einen ersten Zugang zur „Green Chemistry“.

Inhalte:
Im zweiten Teil werden ausgewählte Kapitel der Elementchemie ausgehend von ihrer

Lehrformen:
Vorlesung / Seminar

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung vergeben. Die Ausarbeitung und Präsentation zu einem Thema der Umweltchemie wird als Vorleistung vorausgesetzt.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03%]

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)

Modulverantwortliche/r:
Prof. Dr. Eckard Helmers

Literatur:
• Das Basiswissen der Chemie. C. E. Mortimer & U. Müller, Thieme-Verlag, 2010
• Allgemeine Chemie: Chemie-Basiswissen. Latscha, Klein, Mutz. Springer-Verlag, 2011
• Taschenbuch der Chemie. Karl Schwister. Carl Hanser-Verlag, 2010
• Umweltchemie. C. Bliefert, Wiley-VCH-Verlag, 2002

2.5 Technische Darstellung und Grundlagen der Konstruktion

Technischen Darstellung und Grundlagen der Konstruktion

<table>
<thead>
<tr>
<th>Modulkürzel: TEDAKON</th>
<th>Workload (Arbeitsaufwand): 150 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung:</td>
<td></td>
</tr>
<tr>
<td>a) Vorlesung 4 SWS / 45 h</td>
<td></td>
</tr>
<tr>
<td>b) Übungen 15 h</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit: 45 h</td>
<td></td>
</tr>
<tr>
<td>Selbststudium: 90 h</td>
<td></td>
</tr>
<tr>
<td>Geplante Gruppengröße: 100 Studierende</td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
<table>
<thead>
<tr>
<th>Lernergebnisse/ Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden kennen die Grundlagen der Konstruktion von Bauteilen des allgemeinen Maschinenbaus und sind in die Lage versetzt, technische Zeichnungen zu lesen und einfache Konstruktionen als Skizzen, Fertigungs- und Zusammenstellungszeichnungen zu erstellen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In der Veranstaltung werden grundlegende Methoden der Konstruktionslehre sowie die Gestaltung technischer Zeichnungen unter Einhaltung der anzuwendenden Normen vermittelt.</td>
</tr>
</tbody>
</table>

- Grundlegende Normen
- Geometrische Grundlagen
- Beweglichkeit und Positions festlegung
- 3-Tafel-Projektion
- normgerechte Bemaßung
- Genormte Gestaltelemente, Normteile
- Technische Oberflächen
- Passungen und Toleranzen
- grundlegende DIN-/ISO-Normen

<table>
<thead>
<tr>
<th>Lehrformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung mit praktischer Umsetzung der Vorlesungsinhalte in Übungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfehlungen für die Teilnahme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergabe von Leistungspunkten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note und Leistungspunkte werden auf der Grundlage einer Klausur vergeben. Zur Teilnahme an der Klausur wird das Bestehen der Vorleistung vorausgesetzt.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umfang und Dauer der Prüfung:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/165 [3,03 %] für 6-semestrigen Studiengang;</td>
</tr>
<tr>
<td>5/180 [2,78 %] für 7-semestrigen Studiengang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich (im Wintersemester)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Michael Wahl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pahl/Beitz, Konstruktionslehre, Springer-Verlag</td>
</tr>
</tbody>
</table>
Modulhandbuch Wirtschaftsingenieurwesen / Umweltplanung Umwelt-Campus Birkenfeld

- Hoischen, Technisches Zeichnen, Cornelsen-Verlag
- W. Beitz, K.-H. Grote (Hrsg.) Dubbel-Taschenbuch für den Maschinenbau, Springer Verlag

2.6 Umweltrecht

<table>
<thead>
<tr>
<th>Umweltrecht</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>URECHT</td>
</tr>
<tr>
<td>Workload [Arbeitsaufwand]:</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>2 SWS / 22,5 h im 1. Semester</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>50 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:
Die Studierenden haben
- Grundkenntnisse der Strukturen und einschlägigen Rechtsvorschriften des Immissionschutzrechts (BImSchG) und des Abfallrechts (KrwG)
- Grundverständnis für die Systematik und den Stellenwert des Immissions- schutzrechts und Abfallrechts im umweltrechtlichen Rechtssystem
- Praxisnahe Kenntnisse über den Ablauf von immissionsschutzrechtlichen Verfahren und des Abfallrechts für ein abfallarmes „Stoffstromrecht“ und die Vermittlung der hierzu erforderlichen strategischen Kompetenzen

Inhalte:

Immissionsschutzrecht:
- Grundlagen des Immissionsschutzrechts, insbesondere des Anlagenzulassungsrechts
- Voraussetzungen für die Genehmigung immissionsschutzrechtlich genehmigungsbedürftiger Anlagen
- Ablauf des Genehmigungsverfahrens nach dem Bundes-Immissionsschutzgesetz
- Bedeutung technischer Regelwerke (u.a. TA Lärm und TA Luft)
- Änderung genehmigungsbedürftiger Anlagen

Abfallrecht:
Überblick über die wesentlichen und in der Praxis relevantesten Felder des Abfallrechts, insbesondere
- Grundlagen des Abfallrechts
- Abfallbegriff
- Überlassungspflichten
- Abfallrechtliche Pflichtenhierarchie
- Gefährliche Abfälle

Lehrformen:
Vorlesung mit begleitenden Übungen/Tutorien

Empfehlungen für die Teilnahme:
Voraussetzung für die Teilnahme an der Klausur des 2. Semesters ist das Bestehen der Klausur des 1. Semesters

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich [Beginn des Moduls jeweils im Wintersemester]

Modulverantwortliche/r:
Prof. Dr. Hans-Peter Michler

Literatur:
- Erbguth, Wilfried/Schlacke, Sabine, Umweltrecht, 4. Aufl. 2010
- Koch, Hans-Joachim, Umweltrecht, 3. Aufl. 2010
- Vorlesungsskript „Grundzüge des Abfallrechts“
- Martin Beckmann, Kreislaufwirtschafts- und Abfallrecht, 2007
- Kommentierung des Kreislaufwirtschaftsgesetzes in Giesberts/Reinhardt, Beck’scher Online Kommentar Umweltrecht, 2013 [beck online]

2.7 Grundlagen ökonom. Handels und betriebsw. Methoden

<table>
<thead>
<tr>
<th>Grundlagen ökonomischer Handelns und betriebswirtschaftliche Methoden</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>GRUOEKBET</td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>2 SWS / 22,5 h im 1. Semes-</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppen-</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls:</td>
<td>80 Studierende</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Als Pflichtmodul: U</td>
<td></td>
</tr>
<tr>
<td>Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernergebnisse/ Kompetenzen:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• BEVOWI:</td>
<td></td>
</tr>
<tr>
<td>• BETMET:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• BEVOWI:</td>
<td></td>
</tr>
<tr>
<td>Vorstellung und Einführung, Veranstaltungshinweise</td>
<td></td>
</tr>
<tr>
<td>Grundlagen des Wirtschaftens [Elementare wirtschaftliche Zusammenhänge; ökonomische Rationalprinzipien; ökonomische Größenbegriffe; Kennzahlen betrieblicher Zielrealisation; Elastizitäten]</td>
<td></td>
</tr>
<tr>
<td>Gemeinsame Grundlagen von Betriebs- und Volkswirtschaft [Produktionsfunktionen; Kostenfunktionen; Nutzenfunktionen; Angebots- und Nachfragefunktionen; Erlösfunktionen; betriebliche Entscheidungskalküle]</td>
<td></td>
</tr>
<tr>
<td>Weitere betriebswirtschaftliche Grundlagen [Unternehmensstrukturen in Deutschland; Standortwahl; Rechtsformen; Unternehmensverbindungen; Umwandlungen; Organisation; Führung; Personalwirtschaft]</td>
<td></td>
</tr>
<tr>
<td>Weitere volkswirtschaftliche Grundlagen [Volkswirtschaftliche Gesamtrechnung; Außenwirtschaft; Währung und Wechselkurse; Allokation, Stabilisierung und Distribution als wirtschaftspolitische Aufgaben]</td>
<td></td>
</tr>
<tr>
<td>• BETMET:</td>
<td></td>
</tr>
<tr>
<td>Vorstellung und Einführung, Veranstaltungshinweise</td>
<td></td>
</tr>
<tr>
<td>Allgemeine betriebswirtschaftliche Methoden [Zielbildung und Zielsysteme; Betriebliche Planung; Frühwarnsysteme; Prognosetechniken; Strategische Erfolgsfaktoren; Managementtechniken]</td>
<td></td>
</tr>
</tbody>
</table>
Funktionsbezogene betriebswirtschaftliche Methoden (Produktplanung und -entwicklung; Produktlebenszyklus; Kapazitäts- und Beschäftigungsplanung; Lagerhaltung; Beschaffung; Produktion; Absatz)
Ausgewählte Managementtechniken (Balanced Scorecard; Benchmarking; SOFT-Analyse; Gap-Analyse; Strategische Bilanz; Portfolio-Technik; Potenzial- und Profilanalyse; Strategisches Polardiagramm; Conjoint-Analyse; Meilenstein­trendanalyse; Zeitplantechnik)

Lehrformen:
- BEVOWI:
 Vorlesung und Lehrgespräche, Nachbereitung der Lehrinhalte anhand eines Skrip­tes und der angegebenen Literatur
- BETMET:

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Die Prüfungsleistung wird aufgrund von zwei 90-minütigen Teilprüfungen bewertet. In die Gesamtnote geht BEVOWI mit 3/5 und BETMET mit 2/5 ein.
Begründung: Die kleinteiligen Prüfungen werden für dieses Modul angeboten, da sie eine raschere Möglichkeit der Wiederholungsprüfung für die Teilleistung BEVOWI ermöglichen. Zudem wird die Teilleistung BEVOWI (allerdings in einer anderen Modulzusammenstellung) auch für alle Informatikstudiengänge auf Bachelorebene angeboten. Mit der Teilprüfung BEVOWI wäre somit eine zeitgleiche Prüfung für alle betroffenen Studiengänge in einer Klausur gewährleistet.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03 %]

Häufigkeit des Angebotes:
Jährlich

Modulverantwortliche/r:
Prof. Dr. Jochen Struwe

Literatur:
- BEVOWI:
• Günter Wöhe, Ulrich Döring: „Einführung in die Allgemeine Betriebswirtschaftslehre“, München 2010
• Klaus Olfert, Horst-Joachim Rahn: „Einführung in die Betriebswirtschaftslehre“, Ludwigshafen am Rhein 2008
• Nicholas Gregory Mankiw, Mark P. Taylor: „Grundzüge der Volkswirtschaftslehre“, Stuttgart 2008
• Hal Ronald Varian: „Grundzüge der Mikroökonomik“, München, Wien 2007
• BETMET:
 • Harald Meier: „Unternehmensführung – Aufgaben und Techniken des betrieblichen Managements“, Herne, Berlin 2010
 • Hermann Simon, Andreas von der Gathen: „Das große Handbuch der Strategieinstrumente“, Frankfurt am Main, New York 2010

2.8 Lineare Algebra und Statistik

<table>
<thead>
<tr>
<th>Lineare Algebra und Statistik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: ALGEBRA/STATIS</td>
<td></td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung: Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>100 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

Inhalte:
• Vektoren
• Matrizen
• Determinanten
• Lineare Gleichungssysteme
• Eigenwerte und Eigenvektoren
• Deskriptive univariate und multivariate Statistik (Lage- und Streuungsparameter, Regression, Auswertung und Interpretation von Messergebnissen)
2.9 Thermodynamik und physikalische Chemie

<table>
<thead>
<tr>
<th>Thermodynamik und Physikalische Chemie</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>THECHE</td>
</tr>
<tr>
<td>Workload [Arbeitsaufwand]:</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>100 Studierende</td>
</tr>
</tbody>
</table>

Lehrveranstaltung:
- Vorlesung

Verwendbarkeit des Moduls:

- Wahrscheinlichkeitstheorie
- Kombinatorik
- Diskrete und stetige Zufallsvariablen und ihre Verteilungen

Lehrformen:
Vorlesung mit integrierter Übungsvertiefung und Nachbereitung durch Aufgabenblätter und ggf. Tutorien

Empfehlungen für die Teilnahme:
Sichere Beherrschung mathematischer Grundlagen

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf Grundlage einer Klausur vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03 %] für 6-semestrigen Studiengang;
5/180 [2,78 %] für 7-semestrigen Studiengang;
5/150 [3,3 %] für dualen Studiengang D-PT

Häufigkeit des Angebotes:
Jährlich [im Sommersemester]

Modulverantwortliche/r:
Prof. Dr. Rita Spatz, Dr. Stephan Didas, Dipl.-Math. Natalie Didas

Literatur:
L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 1, Vieweg Verlag Braunschweig/Wiesbaden
L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg Verlag Braunschweig/Wiesbaden
L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 3, Vieweg Verlag Braunschweig/Wiesbaden

Thermodynamik und physikalische Chemie

Workload (Arbeitsaufwand):
150 Stunden

Dauer:
1 Semester

Präsenzzeit:
4 SWS / 45 h

Selbststudium:
105 h

Geplante Gruppengröße:
100 Studierende
Lernergebnisse/ Kompetenzen:
Ziel der Veranstaltung ist es, dass die Studierenden die wesentlichen Aspekte der technischen Thermodynamik beherrschen, welche zu den routinemäßigen Ingenieursforderungen gehören.

Inhalte:

Strömungsmechanik:
- **Grundbegriffe:** Eigenschaften von Flüssigkeiten und Gasen, Kontinuitätsgleichung, laminare und turbulente Strömung
- **Fluidstatik:** Druck, Hydrostatisches Grundgesetz, Auftrieb
- **Fluidodynamik:** Bernoulli - Gleichung, Pumpen, Rohrleitungen, Reibungsgesetze, Strömung in Rohren und um Körper
- **Inkompressible und kompressible Strömungen**

Lehrformen:
Vorlesung und Übungen mit Übungsblättern

Empfehlungen für die Teilnahme:
Mathematisch-physikalische Grundkenntnisse

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung vergeben, ggf. unter Einbeziehung der Übungsleistungen.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich [im Sommersemester]

Modulverantwortliche/r:
Prof. Dr. Gregor Hoogers
2.10 Organische Chemie und Grundpraktikum Chemie

Organische Chemie und Grundpraktikum Chemie	5 ECTS
Modulkürzel: | ORCHEM
Workload [Arbeitsaufwand]: | 150 Stunden
Dauer: | 1 Semester
Lehrveranstaltung: |
Präsenzzeit: |
a) Vorlesung 3 SWS / 35 h
b) Praktikum 1 SWS / 15 h
Selbststudium: | 100 h
Geplante Gruppengröße: | 80 Studierenden
Verwendbarkeit des Moduls:
Als Pflichtmodul: P, U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)
Lernergebisse/ Kompetenzen:
Vorlesung:
Die Studierenden kennen die Systematik der Kohlenwasserstoffe. Die Studierenden kennen den Aufbau, die Stabilität und die erwünschten Wirkungen verschiedener Verbindungsklassen respektive Verbindungen.
Die Studierenden können die Auswirkungen der modernen organischen Chemie in verschiedenen Bereichen unserer Gesellschaft (Wirtschaft, Technik, Lebensstandard, Umwelt- und Gesundheitsbedingungen einschätzen.
Chemisches Grundpraktikum:
Inhalte:
- Erster Teil (Vorlesung, 3 SWS):
- Zweiter Teil (Praktikum zur allg. Chemie, 1 SWS):

Literatur:
- Atkins, Physikalische Chemie
- Becker, Theorie der Wärme
- Cerbe, Thermodynamik
Versuche zur Leitfähigkeit, pH-Messung, Statistik bei der Angabe analytischer Daten, Komplexometrie, Photometrie. Eine Weiterentwicklung der Versuche im Hinblick auf die vorhandene Instrumentierung sowie Vorschläge von Studierenden und Mitarbeitern wird angestrebt.

Lehrformen:
Vorlesung und Praktikum

Empfehlungen für die Teilnahme:
Kenntnisse der allgemeinen und anorganischen Chemie

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung vergeben. Als Vorleistung wird das erfolgreiche Bestehen des Grundpraktikums vorausgesetzt.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03 %]

Häufigkeit des Angebotes:
Jährlich (im Sommersemester)

Modulverantwortliche/r:
Prof. Dr. Eckard Helmers

Literatur:
- Umweltchemie. C. Bliefert, Wiley-VCH-Verlag, 2002

2.11 Fachsprache Englisch

<table>
<thead>
<tr>
<th>Fachsprache Englisch</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>FACHENG</td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>20 – 30 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:

Definition C1: „Der / Die Studierende kann ein breites Spektrum anspruchsvoller, langer Texte verstehen und auch implizite Bedeutungen erfassen. Kann sich spontan und fließend ausdrücken, ohne öfter deutlich erkennbar nach Worten suchen zu müssen. Kann die Sprache im gesellschaftlichen und beruflichen Leben oder in Ausbildung und Studium wirksam und flexibel gebrauchen. Kann sich klar, strukturiert und ausführlich zu komplexen Sachverhalten äußern und dabei verschiedene Mittel zur Textverknüpfung angemessen verwenden.“

Definition C1 (English): Listening / Speaking: The student can contribute effectively to meetings and seminars within own area of work or keep up a casual conversation with a good degree of fluency, coping with abstract expressions. Reading: The student can read quickly enough to cope with an academic course, to consult the media for information or to understand non-standard correspondence. Writing: The student can prepare/draft professional correspondence, take reasonably accurate notes in meetings or write an essay which shows an ability to communicate

Inhalte:

Lehrformen:
Vorlesung mit integrierter Übungsvertiefung und Nachbereitung durch Aufgabenblätter und Tutorien

Empfehlungen für die Teilnahme:
Englischkenntnisse mindestens B1 [Selbständige Sprachverwendung 1] gemäß GER [Gemeinsamer Europäischer Referenzrahmen für Sprachen], entsprechend UniCert I, KMK-Fremdsprachenzertifikat Stufe II

Vergabe von Leistungspunkten:
Studierende werden auf der Basis ihrer mündlichen und schriftlichen Leistungen beurteilt. Die Modulnote setzt sich zusammen aus den Einzelnoten für mündliche Präsentation [benotet] und schriftlicher Klausur [benotet].

Umfang und Dauer der Prüfung:
Allgemeine Regelungen zu Art und Umfang sowie zur Durchführung und Bewertung von Studien- und Prüfungsleistungen sind in der Prüfungsordnung des jeweiligen Stu-
Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang;
5/180 (2,78 %) für 7-semestrigen Studiengang

Häufigkeit des Angebotes:
Jedes Semester

Modulverantwortliche/r:
Dr. Silvia Carvalho, Dr. Martina Witt-Jauch, Christina Juen, Dr. Alexandra Fischer-Pardow

Literatur:
Aktuelle z.T. internetbasierte Quellen.

2.12 Grundlagen der Mechanik und Maschinenelemente

<table>
<thead>
<tr>
<th>Grundlagen der Mechanik und Maschinenelemente</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: GRUMEMA</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
<tr>
<td>Lehrveranstaltung: Vorlesung</td>
<td>Präsenzzeit: 4 SWS / 45 h</td>
</tr>
<tr>
<td>Übung</td>
<td>2 SWS / 22,5 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße: 60 Studierende</td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:
Die Studierenden verstehen die Wirkung grundlegender statischer und dynamischer Belastungen auf idealisierte, starre Strukturen und können deren Beanspruchung ermitteln. Sie können standardisierte Verfahren zur Auslegung und Berechnung von einfachen Maschinenelementen durchführen. Die Studierenden kennen die für die Berechnung erforderlichen Werkstoffgesetze und deren Auslegungsgrenzen.

Inhalte:
- Kräfte und Momente in der Ebene
• Schnittprinzip und Schnittgrößen
• Ein- und mehrteilige Systeme
• Fachwerke und Balkenträger
• Werkstoffkennwerte
• Spannungs-Dehnungs-Diagramm
• Gestaltung von Maschinenelementen
• Statische und dynamische Belastung, Kerbwirkung
• Stoff-, form- und kraftschlüssige Verbindungen
• Wellen, Lager, Schrauben und Schraubenverbindungen

Lehrformen:
Vorlesung und Übung

Empfehlungen für die Teilnahme:
Sichere Beherrschung mathematischer Grundlagen

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer Klausur vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang;
5/180 (2,78 %) für 7-semestrigen Studiengang;
5/150 (3,3 %) für dualen Studiengang D-PT

Häufigkeit des Angebotes:
Jährlich [im Sommersemester]

Modulverantwortliche/r:
Prof. Dr.-Ing. Thomas Preußler, Prof. Dr.-Ing. Peter Gutheil

Literatur:
Hibbeler, Technische Mechanik, Pearson-Verlag
Roloff/Matek, Maschinenelemente, Vieweg-Verlag,
Hinzen, Maschinenelemente, Oldenbourg-Verlag
Berger, Technische Mechanik für Ingenieure, Vieweg-Verlag

2.13 Fachprojekt mit Präsentation

<table>
<thead>
<tr>
<th>Fachprojekt mit Präsentation</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: FP</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
<tr>
<td>Lehrveranstaltung: Projektarbeit</td>
<td>Präsenzzeit: 150 h</td>
</tr>
</tbody>
</table>

Stand 10/2019
Verwendbarkeit des Moduls:

<table>
<thead>
<tr>
<th>Als Pflichtmodul:</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Als Wahlpflichtmodul:</td>
<td>siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)</td>
</tr>
</tbody>
</table>

Lernergebnisse/ Kompetenzen:

Die Studierenden kennen verschiedene Techniken und Methoden zur selbständigen und systematischen Durchführung von Forschungs- und Entwicklungsaufgaben kennen. Sie sollen in der Lage sein, die Präsentation der Ergebnisse einer fachbezogenen Projektarbeit planen, erarbeiten und anschaulich präsentieren zu können.

Inhalte:

Lehrformen:

Projektarbeit, Selbststudium und mündliche Präsentation mit Feed-back-Gespräch

Empfehlungen für die Teilnahme:

Keine

Vergabe von Leistungspunkten:

Note und Leistungspunkte werden auf der Grundlage des schriftlichen Projektberichts und der mündlichen Projektpräsentation vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:

5/165 (3,03 %)

Häufigkeit des Angebotes:

Jährlich (im Wintersemester)

Verantwortliche Dozenten für das Fachprojekt:

Kollegium Fachbereich Umweltplanung / Umwelttechnik

Verantwortliche Dozenten für die Projektpräsentation:

Betreuer des Projektes
Literatur:
Die Unterlagen zum Selbststudium zur Erlernung vorteilhafter Präsentationstechniken werden am Beginn des Projekts ausgehändigt.

2.14 Grundlagen Biologie und Integrative Bioprozesse

<table>
<thead>
<tr>
<th>Grundlagen Biologie und Integrative Bioprozesse</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: GRUBIO/INBIO</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
<tr>
<td>Dauer: 1 Semester</td>
<td></td>
</tr>
</tbody>
</table>
| **Lehrveranstaltung:**
a) Vorlesung
b) Seminar
c) Praktikum | **Präsenzzzeit:**
2 SWS / 22,5 h
1 SWS / 11,25 h
1 SWS / 11,25 h | **Selbststudium:** 105 h |
| **Geplante Gruppengröße:** 80 Studierende |

Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

Inhalte:
- Zellaufbau von Prokaryonten und Eukaryonten
- Bakteriophagen und Viren
- Quantifizierung bakt. Wachstums (Praktikum)
- Enzyme
- Grundlegende stoffwechselphysiologische Prozesse
- Aerob Abbau biogener Stoffe
- Anaerob Stoffumsatz und Biogasbildung
- Bioleaching in der Umwelttechnik
- Denitrifikation von Trinkwasser
- Biologische Vorgänge auf der kommunalen Kläranlage

Lehrformen:
Vorlesung, Seminar und Laborübungen

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden aufgrund einer schriftlichen Prüfung vergeben.
Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)

Modulverantwortliche/r:
Prof. Dr. Robert Klemps

Literatur:
- Biologie von N.A. Campbell, Spektrum Verlag
- Mikrobiologie von H. Schlegel, Thieme Verlag
- Biochemie von Stryer, Spektrum Verlag
- Angew. Mikrobiologie, Fuchs, Thieme Verlag
- Handbuch der Biotechnologie, Verlag Oldenbourg

2.15 Angewandte Elektrotechnik

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>ANGELE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Präsenzeit:</td>
<td>4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>60 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

Inhalte:
Wesentliches Ziel dieser Veranstaltung ist die Erarbeitung der fundamentalen Grundlagen zum elektrischen Strom und zu Stromkreisen. Es werden folgende Themen behandelt:
- Elektrische Kräfte
- Elektrischer Strom [Gleichstrom, Wechselstrom]
- Wirkungen des el. Stromes
Lehrformen:
Vorlesung ergänzt durch Übungen

Empfehlungen für die Teilnahme:
Die Studierenden sollten die Inhalte der Vorlesung Informatik, d. h. Programmierkenntnisse mit der Software MATLAB, beherrschen.

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden aufgrund einer Klausur vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang;
5/180 (2,78 %) für 7-semestrigen Studiengang;
5/150 (3,3 %) für dualen Studiengang D-PT.

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)

Modulverantwortliche/r:
Prof. Dr.-Ing. Klaus Brinkmann

Literatur:
- Elektrotechnik für Maschinenbauer, Fischer R.; Linse H., Vieweg + Teubner
- Elektrotechnik und Elektronik, Busch R., Vieweg + Teubner
- Elektrische Maschinen, Fischer R., Carl Hanser Verlag
- Handbuch der elektrischen Anlagen und Maschinen, Hering E., Springer Verlag

2.16 Grundzüge Vertrags- und Vergaberecht

Grundzüge des Vertrags- und Vergaberechts

| Grundzüge des Vertrags- und Vergaberechts | 5 ECTS |
Modulkürzel: VEGERECH/VERTRECH
Workload (Arbeitsaufwand): 150 Stunden
Dauer: 1 Semester

| Lehrveranstaltung: Vorlesung | Präsenzzeit: 4 SWS / 45 h | Selbststudium: 105 h | Geplante Gruppengröße: 80 Studierende |

Verwendbarkeit des Moduls:
Als Pflichtmodul: "U"
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:
Die Studierenden beherrschen die für die Praxis wichtigen Grundzüge des zivilen Vertragsrechts.
Im Vergaberecht kennen die entscheidenden Rechtsgrundlagen, die Unternehmer befähigen, rechtssichere Angebote in der Konkurrenz um öffentliche, nationale, wie europäische Aufträge abzugeben und den Zuschlag zu erhalten.

Inhalte:
In dieser Veranstaltung sollen die Studierenden Grundkenntnisse auf dem Gebiet des bürgerlichen Rechts, insbesondere des Vertrags- und Vergaberechts vermittelt werden.
- Zustandekommen von Verträgen
- Leistungsstörungen
- Gewährleistungsrecht bei Kauf-, Werk- und Dienstvertrag
- Systematik der nationalen und EU-weiten öffentlichen Auftragsvergabe
- Vergaberechtliche Rahmenbedingungen für den Wettbewerb vor Unternehmen um öffentliche Aufträge
- Fragen des Rechtsschutzes im Bereich der öffentlichen Auftragsvorgabe

Lehrformen:
Vorlesung

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung vergeben.

Umgang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03%)

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)

Modulverantwortliche/r:
Weyland

Literatur:
- Pünder/Schellenberg, Vergaberecht, Kommentar, 2011
- Noch, Vergaberecht kompakt, 5. Aufl. 2011
- Leinemann, Das neue Vergaberecht, 2. Aufl. 2010

2.17 Betriebliches Rechnungswesen

<table>
<thead>
<tr>
<th>Betriebliches Rechnungswesen</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>REWE</td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>
| **Präsenzzeit:** | 2 SWS / 22,5 h im 3. Semester
2 SWS / 22,5 h im 4. Semester |
| **Selbststudium:** | 105 h |
| **Geplante Gruppengröße:** | 80 Studierende |

Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

- **REWE I:**

- **REWE II:**

Inhalte:
- **REWE I:**
Vorstellung und Einführung, Veranstaltungshinweise
- Grundlagen des Rechnungswesens (Ökonomische Größenbegriffe; Kennzahlen betrieblicher Zielrealisation; doppelte Buchführung; betriebliches Rechnungswesen)
- Finanzbuchhaltung (Rechnungslegung; handelsrechtlicher Jahresabschluss)
- Betriebsbuchhaltung (Kostenrechnung; Kostenrechnungssysteme)

REWE II:
- Vorstellung und Einführung, Veranstaltungshinweise
- Internes Rechnungswesen (Kostenrechnung; Kostenrechnungssysteme; Kostenmanagement)
- Instrumente des strategischen Kostenmanagements (Gemeinkostenwertanalyse, Zero-Base-Budgeting; Fixkostenflexibilisierung; Qualitätskostenmanagement; Prozesskostenrechnung; Produktlebenszykluskostenrechnung; Ziellkostenmanagement)
- Instrumente des operativen Kostenmanagements (Betriebsergebnisrechnung; Deckungsbeitragsrechnung; Sortimentspolitik; Optimierung des Produktionsprogramms; Break-Even-Analyse; Make-or-Buy-Entscheidungen; Plankostenrechnung)

Lehrformen:
- **REWE I:**
- **REWE II:**

Empfehlungen für die Teilnahme:
Kenntnisse in den Grundlagen ökonomischen Handelns und betriebswirtschaftliche Methoden (BEVOWI, BETMET)
Vergabe von Leistungspunkten:
Die Prüfungsergebnis wird anhand einer benoteten Klausur bewertet. Die Prüfungsleistung gilt als erbracht, wenn sie bzw. die Klausur mit mindestens „ausreichend“ (Note 4,0) bewertet wird.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich

Modulverantwortliche/r:
Prof. Dr. Jochen Struwe

Literatur:
- REWE I:
 - Siegfried Schmolke, Manfred Deitermann: „Industrielles Rechnungswesen IKR“, Darmstadt 2009
 - Hartmut Bieg, Heinz Kußmaul: „Externes Rechnungswesen“, München 2009
- REWE II:

2.18 Finanzierung, Investition und Management von Projekten

<table>
<thead>
<tr>
<th>Finanzierung, Investition und Management von Projekten</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>FIMP</td>
</tr>
<tr>
<td>Workload [Arbeitsaufwand]:</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>2 Semester</td>
</tr>
</tbody>
</table>
Lehrveranstaltung: Vorlesung
Präsenzzeit:
- 2 SWS / 22,5 h im 3. Semester
- 2 SWS / 22,5 h im 4. Semester
Selbststudium: 105 h
Geplante Gruppengröße: 80 Studierende

Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:
- FININV:
- PROMACO:

Inhalte:
- FININV:
 o Vorstellung und Einführung, Veranstaltungshinweise
 o Finanzierung (Finanzierungsarten; Kreditsicherheiten; Leverageeffekt; Liquidität und Finanzplanung; Dynamic Planning of Liquidity)
 o Investition (Investitionsarten; Investitionsplanung; Nutzungsdauer; Investitionserfolgsermittlungsmethoden; Nutzwertanalyse; vollständiger Finanzplan; Investitionsprogrammplanung; Risikoabschätzungsverfahren; Monte-Carlo-Simulation; Investitionscontrolling)
PROMACO:
- Vorstellung und Einführung, Veranstaltungshinweise
- Definition und Durchführung von Projekten (Projektdefinition und -arten; Projektmanagement; Projektorganisation; Projektphasen; Zeitplantechnik; Budget)
- Steuerung und Überwachung von Projekten (Projekt- und Budgetcontrolling; Projektberichtswesen)
- Projektplanung und -kontrolle mit Hilfe von MS-Project® und MS-Excel®

Lehrformen:

FININV:

PROMACO:

Empfehlungen für die Teilnahme:
Kenntnisse in den Grundlagen ökonomischen Handelns und betriebswirtschaftliche Methoden [BEVOWI, BETMET]

Vergabe von Leistungspunkten:
FININV wird über eine Klausur abgeprüft; das Bestehen dieser Klausur ist als Vorleistung notwendig, um an dem zweiten Modulteil PROMACO teilnehmen zu können. PROMACO wird aufgrund einer Hausarbeit/Projektdokumentation bewertet; die Note dieser Hausarbeit/Projektdokumentation ist gleichzeitig die Modulnote FIMP. Begründung: Aufgrund der unterschiedlichen Veranstaltungsmethodik und der daraus resultierenden unterschiedlichen Prüfungsformen ist eine Aufsplitterung in Teilprüfungen erforderlich.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)
Häufigkeit des Angebotes:
Jährlich

Modulverantwortliche/r:
Prof. Dr. Jochen Struwe

Literatur:
• FININV:
 o Klaus-Dieter Däumler: „Betriebliche Finanzwirtschaft“, Herne, Berlin 2008
 o Klaus Olfert: „Finanzierung“, Ludwigshafen am Rhein 2011
 o Klaus Olfert: „Investition“, Ludwigshafen am Rhein 2009

• PROMACO:
 o Hans-Dieter Litke, Ilonka Kunow: „Projektmanagement“, Freiburg im Breisgau 2006
 o Pitter A. Steinbuch: „Projektorganisation und Projektmanagement“, Ludwigshafen am Rhein 2002

2.19 Energietechnik

<table>
<thead>
<tr>
<th>Energietechnik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>ENTEC</td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>100 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: G, P, U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:
Die Studierenden haben grundlegende Kenntnisse des Energiesektors erworben. Die Studierenden können die erworbenen Kenntnisse im Hinblick auf aktuelle Ansätze der Energietechnik anwenden.

Inhalte:
Das Modul beinhaltet eine Einführung in das Thema Energie. Hierzu gehören zunächst auch Einheiten, Energieformen und Grundbegriffe wie Primärenergie und die Unterscheidung zwischen fossilen und erneuerbaren Energiequellen.
Lehrformen:
Vorlesung, ergänzt durch Exkursionen; es werden ergänzend gezielt Lehrbeauftragte zu einzelnen Themen hinzugezogen.

Empfehlungen für die Teilnahme:
Erfolgreicher Besuch einer Lehrveranstaltung zur Thermodynamik

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer Klausur vergeben.

Umfang und Dauer der Prüfung:
Allgemeine Regelungen zu Art und Umfang sowie zur Durchführung und Bewertung von Studien- und Prüfungsleistungen sind in der Prüfungsordnung des jeweiligen Studiengangs definiert.

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang; 5/180 (2,78 %) für 7-semestrigen Studiengang

Häufigkeit des Angebotes:
Jährlich (im Sommersemester)

Modulverantwortliche/r:
Prof. Dr. Gregor Hoogers, Prof. Dr. Henrik te Heesen

Literatur:
Kugler/Philpen: Energietechnik: Technische, ökonomische und ökologische Grundlagen, VDI-Verlag
Fachartikel, auf die in der Vorlesung hingewiesen wird.

2.20 Grundlagen Verfahrenstechnik

<table>
<thead>
<tr>
<th>Grundlagen Verfahrenstechnik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>GRUVER</td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td></td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td></td>
</tr>
<tr>
<td>b) Praktikum</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>90 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>30 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:
Die Studierenden sollen über ein breites Feld der Verfahrenstechnik Kenntnisse zu den grundlegenden Vorgängen und Prozessen erhalten. Die Lehrveranstaltung wird die Studierenden damit in die Lage versetzen sich für spätere Spezialisierungen kompetent zu entscheiden und die grundlegenden Einsatzbereiche und Grenzen der Verfahren zu verstehen.
Modulhandbuch Wirtschaftsingenieurwesen / Umweltplanung Umwelt-Campus Birkenfeld

Inhalte:
- Grundlagen der Mechanischen Verfahrenstechnik, (Partikelmesstechnik, Kräftegleichgewichte, WW Fluid-Partikel und Wand-Partikel, Bruchvorgänge, Vorgänge in Haufwerken)
- Beispielhafte Anwendung auf Zerkleinerungs-, Trenn- und Mischaufgaben
- Einführung in die thermodynamischen Grundlagen und in Grundlagen der Reaktionschemie.

Lehrformen:
Vorlesung, Übungen und Praktikum

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03 %]

Häufigkeit des Angebotes:
Jährlich (im Sommersemester)

Modulverantwortliche(r):
Prof. Dr. Stefan Trapp, Prof. Dr. Michael Bottlinger

Literatur:
- Müller, Mechanische Verfahrenstechnik; Praxiswissen der chemischen Verfahrenstechnik: Handbuch für Chemiker und Verfahrensingenieure

2.21 Marketing und Kommunikation

Marketing und Kommunikation	5 ECTS
Modulkürzel: MARKOM |
Workload [Arbeitsaufwand]: 150 Stunden |
Dauer: 1 Semester |
Lehrveranstaltung: Vorlesung |
Präsenzzeit: 4 SWS / 45 h | Selbststudium: 105 h |
Geplante Gruppengröße: 30 Studierenden |
Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuel-
Lernergebnisse/ Kompetenzen:

Inhalte:
In ersten Teil der Veranstaltung werden Grundlagen des Marketings vorgestellt. Den Schwerpunkt bilden dabei folgende Bereiche:
- Marketing als Prozess
- Käuferverhalten
- Kommunikationspolitik

In zweiten Teil der Veranstaltung stehen Techniken der Kommunikation und Präsentation im Vordergrund. Den Schwerpunkt bilden dabei folgende Bereiche:
- Grundlagen der Kommunikationstheorie
- Kommunikation im Berufsalltag
- Rhetorik und Präsentationstechnik

Lehrformen:
Vorlesung

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich (im Sommersemester)

Modulverantwortliche/r:
Prof. Dr. Tim Schönborn

Literatur:
- Kroeber-Riel, Werner u.a. [2008]: Konsumentenverhalten.
2.22 Produktionslogistik

<table>
<thead>
<tr>
<th>Produktionslogistik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>PROLOG</td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td></td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td></td>
</tr>
<tr>
<td>b) Übungen</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>2 SWS / 22,5 h</td>
</tr>
<tr>
<td></td>
<td>2 SWS / 22,5 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>30 Studierenden</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:
The Studierenden können mit Hilfe von Beschreibungsmodellen die Produktionslogistik, insbesondere die Produktionsplanung und -steuerung vereinfacht abbilden. Sie haben ein Verständnis für die Tätigkeiten und typischen Geschäftsprozesse in diesem Bereich und kennen die Planungs- und Steuerungsmethoden, die hier zum Einsatz kommen. Zudem haben sie ein Verständnis für den Produktentstehungsprozess und die Auftragsabwicklung in einem Produktionsunternehmen entwickelt.

Inhalte:

Schwerpunktthemen:
- Beschreibungsmodelle der Produktionsplanung und -steuerung
- Aufgaben, Abläufe und Methoden der Produktionsplanung und -steuerung
- PPS-relevante, technisch orientierte Unternehmensfunktionen
- Auftragsabwicklungstypen in der Industrie

Lehrformen:
Vorlesung mit Übungen

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer mündlichen oder schriftlichen Prüfung vergeben.
Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03%)

Häufigkeit des Angebotes:
Jährlich (im Sommersemester)

Modulverantwortliche/r:
Prof. Dr. Thomas Geib

Literatur:
Eine aktuelle Literaturliste wird zu Beginn der Veranstaltung vorgestellt.

2.23 Umwelt- und Stoffstrommanagement

<table>
<thead>
<tr>
<th>Umwelt- und Stoffstrommanagement</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: UMANAG/SSM-B</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
<tr>
<td>Dauer: 1 Semester</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung: Vorlesung</td>
<td>Präsenzzeit: 4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium: 105 h</td>
<td>Geplante Gruppengröße: 30 Studierenden</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:
Die Studierenden kennen:
- Rechtliche Grundlagen des Betrieblichen Umweltmanagements (Pflichten, freiwillige Instrumentarien, Qualitätssicherung, Integrierte Konzepte, Haftungsrelevanz)
- Instrumente zur Analyse von Stoffströmen (Ökobilanz, Carbon Footprint, Kumulierter Energieaufwand, Energiebilanz)
- Konzepte des betrieblichen Stoffstrommanagements vergleichen (Null-Emission, Kreislaufwirtschaft, Öko-Industrielle Symbiose, regenerative Energiewirtschaft)

Inhalte:
- Juristische Grundlagen des betrieblichen Umweltmanagements (UMANAG):
 - Einführung und Grundbegriffe (Managementsystem, Arten von Managementsystemen)
 - ISO 14001 und EMAS-Verordnung
 - ISO 16001 Energiemanagement
 - Integrierte Managementsysteme
 - Schnittstellen Umweltaufsicht – Umweltmanagement
 - Rechtliche Relevanz technischer Normung
Ökobilanzen und Stoffstrommanagement [SSM-B]:
Ökobilanzen [LCA] als Instrument der betrieblichen Optimierung
Produktökobilanzen in der Unternehmenspraxis
Strategien und Instrumente des Betrieblichen Stoffstrommanagements
Produktionsintegrierter Umweltschutz, Material-/Energieeffizienz

Lehrformen:
Vorlesung mit integrierten Übungsbestandteilen

Empfehlungen für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden von auf der Basis einer Klausur vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)

Modulverantwortliche/r:
Prof. Dr. Tilman Cosack, Prof. Dr.-Ing. Susanne Hartard

Literatur:
Förtsch, Gabi; Meinholz, Heinz [2011], Handbuch Betriebliches Umweltmanagement, Vieweg+Teubner Verlag.
Klöpffer, W. / Grahl, Birgit [2009], Ökobilanz [LCA], Ein Leitfaden für Ausbildung und Beruf, Wiley-VCH
Kals, Johannes [2010], Betriebliches Energiemanagement - Eine Einführung. Kohlhammer Verlag
Posch, Wolfgang [2011], Ganzheitliches Energiemanagement für Industriebetriebe [Techno-ökonomische Forschung und Praxis], Gabler Verlag
Knopp, Lothar/Wiegeleb, Gerhard [2009], Der Biodiversitätsschaden des Umweltschadensgesetzes, Springer Verlag
Schulte, Martin/Schröder, Rainer [2010], Handbuch des Technikrechts, Springer Verlag
Interdisziplinäre Projektarbeit (Bachelor)

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>IP (Bachelor)</th>
<th>Workload (Arbeitsaufwand):</th>
<th>150 Stunden</th>
<th>Dauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung:</td>
<td>Projektarbeit</td>
<td>Präsenzzeit/ Selbststudium:</td>
<td>150 h</td>
<td>Geplante Gruppengröße:</td>
<td>1 - 4 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

Inhalte:

Lehrformen:
Projektarbeit

Empfehlungen für die Teilnahme:
Profunde Kenntnisse der im bisherigen Studienverlauf erworbenen Methoden und Verfahren

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage der Projektarbeit in Kombination mit einer mündlichen Projektpräsentation vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang;
5/180 (2,78 %) für 7-semestrigen Studiengang

Häufigkeit des Angebotes:
Jedes Semester

Modulverantwortliche/r:
Alle Dozenten/-innen des Umwelt-Campus Birkenfeld

Literatur:
- Fachliteratur in Abhängigkeit von der Themenstellung (Beratung durch Projektbetreuer)
- Weitere Informationen unter:
 - www.umwelt-campus.de/campus/organisation/verwaltung-service/bibliothek/service/arbeitshilfen/
 - www.umwelt-campus.de/studium/informationen-service/studieneinstieg/schreibwerkstatt/

2.25 Praktische Studienphase

<table>
<thead>
<tr>
<th>Praktische Studienphase</th>
<th>15 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>Workload [Arbeitsaufwand]: 450 Stunden</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Präsenzzeit/ Selbststudium: 12 Wochen</td>
</tr>
<tr>
<td>Praxisphase</td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: P, T, O, H, V, U, G
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:

Inhalte:
In der praktischen Studienphase wird ein von der Hochschule betreutes Projekt in enger Zusammenarbeit mit geeigneten Unternehmen oder Institutionen so durchgeführt, dass ein möglichst hohes Maß an Kenntnissen und Erfahrungen erworben wird. Die Studierenden werden von der Hochschule in allen Fragen der Suche und Auswahl von
Kooperationspartnern beraten. Die praktische Studienphase ist nicht handwerklich orientiert.

Gegenstand des als Vorleistung zu erbringenden Praxisorientierten Arbeitens sind Aufgabenstellungen, die praxisnahe, soziale, gruppen- und projektorientierte sowie organisatorische Inhalte haben, z. B.

- Teilnahme an den Erstsemestereinführungstagen
- Betreuung der Erstsemestereinführungstage
- Aufbau innerer Strukturen
- Unterstützung der Lehre
- Tutorien
- Mitarbeit bei Forschungs- oder Entwicklungsprojekten
- Vorbereitung/ Organisation von Veranstaltungen/ Tagungen

Lehrformen:

Empfehlungen für die Teilnahme:
Teilnahme an den Erstsemestereinführungsveranstaltungen nur, wer zum ersten Mal das Studium am Umwelt-Campus aufnimmt.

Vergabe von Leistungspunkten:
Gemäß der Ordnung für die praktische Studienphase erfolgt die Bewertung der praktischen Studienphase durch die Hochschule auf Grund der Bescheinigung der Praxisstelle und durch die Bewertung des Praxisberichts durch den betreuenden Professor/ die betreuende Professorin. Voraussetzung für die Vergabe der Leistungspunkte ist der Nachweis zweier erfolgreich absolviert er bzw. bestandener Studienleistungen. Die erste Studienleistung ist i.d.R. der erfolgreiche Abschluss der Erstsemestereinführungstage.

Stellenwert der Note für die Endnote:
Dieses Modul wird nicht benotet.

Häufigkeit des Angebotes:
Jedes Semester

Modulverantwortliche/r:
alle Dozenten des Umwelt-Campus Birkenfeld

Literatur:
In Abhängigkeit von der Themenstellung, sowie:

2.26 Bachelor-Thesis und Kolloquium

<table>
<thead>
<tr>
<th>Bachelor-Thesis und Kolloquium</th>
<th>15 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>Workload (Arbeitsaufwand):</td>
</tr>
</tbody>
</table>

Stand 10/2019
Lehrveranstaltung:

<table>
<thead>
<tr>
<th>450 Stunden</th>
<th>0,5 Semester</th>
</tr>
</thead>
</table>

Lehrveranstaltung:

- a) Abschlussarbeit
- b) Kolloquium

Präsenzzeit/Selbststudium:

| 450 h |

Geplante Gruppengröße:

| 1 Studierende / Studierender |

Verwendbarkeit des Moduls:

Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:

Die Studierenden sind in der Lage überwiegend selbständig fachspezifische Methoden, Konzepte und Verfahren auf neue Situationen anzuwenden und Lösungen zu erarbeiten. Sie sind in der Lage, die Lösung auf ihre praktische Relevanz, ihre technischen, ökonomischen, sozialen und ökologischen Auswirkungen zu prüfen, diese darzustellen und in der Diskussion zu vertreten.

Inhalte:

Lehrformen:

Abschlussarbeit über 9 Wochen und Kolloquium über die Abschlussarbeit

Empfehlungen für die Teilnahme:

Vergabe von Leistungspunkten:

Bewertung der schriftlichen Bachelor-Thesis [12 ECTS-Punkte] und der mündlichen Prüfung [3 ECTS-Punkte]

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:

| 15/165 (9,09 %) für 6-semestrigen Studiengang; |
| 15/180 (8,33 %) für 7-semestrigen Studiengang; |
| 15/150 (10 %) für dualen Studiengang D-PT |

Häufigkeit des Angebotes:

Jedes Semester

Modulverantwortliche/r:

Professor/-in und evtl. externe Betreuer nach Wahl
Literatur:
In Abhängigkeit von der Themenstellung, sowie:
1. Auflage, Herdecke 2008
3 Wahlpflichtmodul Umwelttechnik (Vertiefungsrichtung Umwelttechnik)

Im Bereich der Umwelttechnik müssen von den Studierenden im 4. und 5. Semester insgesamt drei Module im Umfang von insgesamt 15 ECTS gewählt werden. Zu wählen ist aus folgenden Modulen:

3.1 Technische Akustik / Schallschutz [WP]

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>Workload (Arbeitsaufwand):</th>
<th>Dauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TECHAK</td>
<td>150 Stunden</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung:</th>
<th>Präsenzzeit:</th>
<th>Selbststudium:</th>
<th>Geplante Gruppen-größe:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>4 SWS / 45 h</td>
<td>105 h</td>
<td>30 Studierenden</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: -
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

Inhalte:
- Problemkreis Lärm
- Schallpegel
- Schallfeld
- Schallausbreitung
- Schalldämmung
- Beurteilung und Bewertung von Schallimmissionen

Lehrformen:
Vorlesung mit integrierter Übungsvertiefung

Empfehlungen für die Teilnahme:
Die Studierenden sollten Grundkenntnisse der Physik und Mathematik haben.

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung / Projekt vergeben.

Umfang und Dauer der Prüfung:
Allgemeine Regelungen zu Art und Umfang sowie zur Durchführung und Bewertung
von Studien- und Prüfungsleistungen sind in der Prüfungsordnung des jeweiligen Stu-
diengangs definiert. Die Art des Leistungsnachweises sowie genaue Hinweise und De-
tails werden zu Beginn des Semesters durch den jeweiligen Dozenten bekanntgegeben.

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/165 (3,03 %)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich (im Sommersemester)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Kerstin Giering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Henn, Sinambari, Fallen: Ingenieurakustik</td>
</tr>
<tr>
<td>• Veit: Technische Akustik</td>
</tr>
<tr>
<td>• Möser: Technische Akustik</td>
</tr>
<tr>
<td>• Maute: Technisch Akustik und Lärmschutz</td>
</tr>
</tbody>
</table>

3.2 Lärmmessungen und Lärmberechnungen (WP)

<table>
<thead>
<tr>
<th>Lärmmessungen und Lärmberechnungen (WP)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: LAERM</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
<tr>
<td>Dauer: 1 Semester</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Rechnerübungen</td>
</tr>
<tr>
<td>b) Laborübungen</td>
</tr>
<tr>
<td>Präsenzzeit: 4 SWS / 45 h 15 h</td>
</tr>
<tr>
<td>Selbststudium: 90 h</td>
</tr>
</tbody>
</table>
| Geplante Gruppengrö-
Be: 30 Studierenden |

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Als Pflichtmodul: -</td>
</tr>
</tbody>
</table>
| Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuel-
es Semester“] |

<table>
<thead>
<tr>
<th>Lernergebnisse/ Kompetenzen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhalte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einführung in das Schallberechnungsprogramm SoundPLAN</td>
</tr>
<tr>
<td>• Arbeiten mit der Geodatenbank</td>
</tr>
<tr>
<td>• Modellierung von Gelände, Emittenten und Empfängern</td>
</tr>
<tr>
<td>• Durchführung verschiedener Rechenverfahren</td>
</tr>
<tr>
<td>• Bewertung der Beurteilungspegel</td>
</tr>
<tr>
<td>• Graphische Darstellungsverfahren</td>
</tr>
</tbody>
</table>
• Akustische Messungen
• Schalleistungsbestimmung
• Bestimmung des Absorptionsgrades
• Verkehrslärmmessung

Lehrformen:
Rechnerübung und Laborübung

Empfehlungen für die Teilnahme:
Die Studierenden sollten die Vorlesung Technische Akustik / Schallschutz besucht haben.

Vergabe von Leistungspunkten:
Leistungspunkte werden auf der Grundlage eines Projekts sowie der Teilnahme und der Erstellung eines Praktikumsberichts vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03 %] für 6-semestrigen Studiengang;
5/180 [2,78 %] für 7-semestrigen Studiengang

Häufigkeit des Angebotes:
Jedes Semester

Modulverantwortliche/r:
Prof. Dr. Kerstin Giering

Literatur:
- Henn, Sinambari, Fallen: Ingenieurakustik
- Maute: Technisch Akustik und Lärmschutz

3.3 Instrumentelle Analytik (Umweltanalytik)

Instrumentelle Analytik (Umweltanalytik)

<table>
<thead>
<tr>
<th>Modulkürzel: INSTANLY</th>
<th>Workload [Arbeitsaufwand]: 150 Stunden</th>
<th>Dauer: 1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung: Vorlesung</td>
<td>Präsenzzeit: 4 SWS / 45 h</td>
<td>Selbststudium: 105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße: 30 Studierenden</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: V, U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:
“Spurenanalytische Daten sind die Grundlage für politische, juristische und medizini
sche Entscheidungen, die nicht nur die Wiedergewinnung und Erhaltung der Qualität
von Luft, Wasser und von Lebensmitteln, sondern insgesamt die Qualität des Lebens
betreffen” [Monien et al., 1978]. Dies ist die Motivation, den Studierenden in dieser
Veranstaltung einen Überblick über die Technik, das gesellschaftliche Umfeld und die
Strategie instrumenteller Analytik zu verschaffen. Hiermit sollen die Studierenden in
die Lage versetzt werden, als Projektverantwortliche richtig und sinnvoll Analytik zu
planen, zu organisieren und auszuwerten.

Inhalte:
Die Vorlesung stellt die verbreitetsten Methoden der instrumentellen Analytik vor [or
ganische und anorganische Spurenanalytik, Sensorik]. Im Kapitel anorganische Analytik
werden z.B. AAS, ICP, Photometrie und Röntgenfluoreszenzanalytik behandelt. Die Org
organische Analytik konzentriert sich auf die Methoden der Chromatographie, z.B. Dünn
schicht-, Gas-, Flüssig, Hochleistungs- und Ionenchromatographie. Die Massenspekt
rometrie wird als unverzichtbares Instrument beider Welten vorgestellt. Insbesondere
sind jedoch die Konzepte und Strategien der Analytik Gegenstand der Vorlesung, die
to richtigen Daten führen. Der Stellenwert richtiger Probenahme, Aufarbeitung und
Lagerung wird betont. Methoden des analytischen Qualitätsmanagements stellen ei
nen weiteren Schwerpunkt dar.
In Exkursion und Gerätevorführungen am Campus erfolgt eine Einführung in die Praxis
der Spurenanalytik.

Lehrformen:
Vorlesung mit Exkursion und Gerätevorführungen

Empfehlungen für die Teilnahme:
Kenntnisse der allgemeinen und anorganischen Chemie

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf Grundlage einer schriftlichen Prüfung oder einer
schriftlichen Ausarbeitung oder mündlichen Prüfung vergeben.

Umfang und Dauer der Prüfung:
Allgemeine Regelungen zu Art und Umfang sowie zur Durchführung und Bewertung
von Studien- und Prüfungsleistungen sind in der Prüfungsordnung des jeweiligen Stu
diengangs definiert. Die Art des Leistungsnachweises sowie genaue Hinweise und De
tails werden zu Beginn des Semesters durch den jeweiligen Dozenten bekanntgegeben.

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich [im Wintersemester]

Modulverantwortliche/r:
Prof. Dr. Eckard Helmers

Literatur:
- Analytische Chemie: Grundlagen, Methoden und Praxis. G. Schwedt. Wiley-VCH-
Verlag, 2008
3.4 Boden- und Grundwassersanierung

<table>
<thead>
<tr>
<th>Boden- und Grundwassersanierung</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: BODGRU</td>
<td></td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td></td>
</tr>
<tr>
<td>150 Stunden</td>
<td></td>
</tr>
<tr>
<td>Dauer:</td>
<td></td>
</tr>
<tr>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung: Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit: 4 SWS / 45 h</td>
<td></td>
</tr>
<tr>
<td>Selbststudium: 105 h</td>
<td></td>
</tr>
<tr>
<td>Geplante Gruppengröße: 30 Studierenden</td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: V
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:

Inhalte:
- Definition Boden, Grundwasser
- Schadstoffe in Boden und Grundwasser: Art, Chemie, Transportmechanismen
- Physikalische, chemische und biologische Sanierungsverfahren
- Aktive und passive hydraulische Sanierungsverfahren, Natural Attenuation
- Sicherungsverfahren für Altlasten und kontaminierte Standorte
- Sanierungs durchführung und Sanierungsplanung

Lehrformen:
Vorlesung gemischt mit Vorträgen der Studierenden sowie Exkursionen

Empfehlungen für die Teilnahme:
Die Studierenden sollen die Grundlagen der Chemie, Physik und Biologie beherrschen.

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf Grundlage einer schriftlichen Prüfung oder einer schriftlichen Ausarbeitung oder mündlichen Prüfung vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03 %] für 6-semestrigen Studiengang;
5/180 [2,78 %] für 7-semestrigen Studiengang

Häufigkeit des Angebotes:
Jährlich [im Sommersemester]
Prof. Dr. Heike Bradl

Literatur:

3.5 Abwassertechnik (WP)

<table>
<thead>
<tr>
<th>Modulkürzel: AWATEC</th>
<th>Workload [Arbeitsaufwand]: 150 Stunden</th>
<th>Dauer: 1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltung:</td>
<td>Präsenzzeit:</td>
<td>Selbststudium:</td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>2 SWS / 22,5 h</td>
<td>105 h</td>
</tr>
<tr>
<td>b) Praktikum</td>
<td>1 SWS / 11,25 h</td>
<td></td>
</tr>
<tr>
<td>c) Exkursionen</td>
<td>1 SWS / 11,25 h</td>
<td></td>
</tr>
<tr>
<td>Selbststudium:</td>
<td></td>
<td>Geplante Gruppen-größe:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 Studierenden</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: U
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:
Die Studierenden haben
- Kenntnissen über die Abwassersituation in Deutschland
- Vertiefte Kenntnisse zur Behandlung von Abwasser
- Fähigkeiten zur Projektierung und Auslegung von Kläranlagen
- Aneignung von Methoden zur Abwasserbehandlung

** Inhalte:**
- Gewässerüberwachung (Güteklassen, Grenzwerte etc.)
- Gesetze und Verordnungen zur Abwasserreinigung
- Selbstreinigungspotential natürlicher Gewässer
- Naturnahe Abwasser-Behandlungsverfahren (Teiche, PKA, Verrieselung)
- Verfahrensschritte auf der kommunalen Kläranlage (Mechanische, biologische und chem. Abwasserbehandlung)
- Tropfkörper, Tauchkörper, Oxidationsgraben, industrielle Kläranlagen
- Schlammbehandlung (Stabilisierung, Entwässerung, Nutzung)

Lehrformen:
- Vorlesung und Seminar
- Praktikum
- Besichtigungen von Kläranlagen

Empfehlungen für die Teilnahme:
keine
Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf Grundlage einer schriftlichen Prüfung oder einer schriftlichen Ausarbeitung oder mündlichen Prüfung vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
15/165 (3,03%)

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)

Modulverantwortliche/r:
Prof. Dr. Robert Klemps

Literatur:
• Abwasser und Recyclingtechnik, Hartinger, Hansa-Verlag
• Abwassertechnik
• Biologie der Abwassertechnik, Murdrack, Thieme Verlag

3.6 Brennstoffzellen- und Batterietechnik

<table>
<thead>
<tr>
<th>Brennstoffzellen- und Batterietechnik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: BZBATEC</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
<tr>
<td>Dauer: 1 Semester</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Präsenzzeit: 4 SWS / 45 h 15 h</td>
</tr>
<tr>
<td>a) Vorlesung</td>
<td>Selbststudium: 90 h</td>
</tr>
<tr>
<td>b) Übung</td>
<td>Geplante Gruppengröße: 30 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: P
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse / Kompetenzen:
Erfolgreiche Studierende verstehen die Grundlagen von Brennstoffzellen und Batterien, können elektrochemische Energiesysteme analysieren und beurteilen. Sie können weiterhin derartige Systeme selbst konzipieren.

Inhalte:
Brennstoffzellen-, Wasserstoff- und Reformertechnik sowie Batterietechnik einschließlich Redox-Flow-Batterien.

Lehrformen:
Vorlesung mit integrierten Übungen und einem Laborpraktikum

Empfehlungen für die Teilnahme:
Erfolgreicher Besuch einer Vorlesung über Thermodynamik und/oder Physikalische
Chemie

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf Basis einer Klausur vergeben.

Umfang und Dauer der Prüfung:
Allgemeine Regelungen zu Art und Umfang sowie zur Durchführung und Bewertung von Studien- und Prüfungsleistungen sind in der Prüfungsordnung des jeweiligen Studiengangs definiert.

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang;
5/180 (2,78 %) für 7-semestrigen Studiengang;
5/150 (3,3 %) für dualen Studiengang D-PT

Häufigkeit des Angebotes:
Jährlich [im Wintersemester]

Modulverantwortliche/r:
Prof. Dr. Gregor Hoogers

Literatur:
Larminie, Fuel Cell Systems Explained, Wiley VCH
Vielstich, Handbook of Fuel Cells, Wiley VCH
David Linden, Handbook of Batteries, McGraw-Hill

3.7 Luftreinhaltung (WP)

<table>
<thead>
<tr>
<th>Luftreinhaltung (WP)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: LURE</td>
<td>Workload (Arbeitsaufwand): 150 Stunden</td>
</tr>
</tbody>
</table>
| **Lehrveranstaltung:**
a) Vorlesung
b) Praktikum | **Präsenzzeit:**
3 SWS / 33,75 h
1 SWS / 11,25 h | **Selbststudium:**
105 h | **Geplante Gruppengröße:**
30 Studierenden |

Verwendbarkeit des Moduls:
Als Pflichtmodul: -
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/ Kompetenzen:
Die Studierenden kennen die Zusammensetzung der uns umgebenden Luft und die Entstehung und Wirkung der wichtigsten Luftschadstoffe. Durch die Kenntnisse verschiedener Reinigungsverfahren sowie der gesetzlichen Grundlagen sind die Studierenden in der Lage für emittierende Betriebe Vorschläge für geeignete Reinigungsanlagen zu erarbeiten.
Die Studierenden kennen die Vorgaben des BImSchG und können diese auf konkrete Fälle anwenden.
Im Praktikum bestimmen die Studierenden anhand einer Beispielanlage die Schorn-
steinhöhe einer Anlage und prüfen, ob alle Genehmigungsvoraussetzungen erfüllt werden können.

Inhalte:
- Aufbau der Erdatmosphäre
- Wichtige Luftschadstoffe, Eigenschaften und Emissionsquellen
- Transport, Umwandlung und Wirkung von Luftverunreinigungen
- Maßnahmen zur Luftreinhaltung
- Gesetzliche Grundlagen
- Entwicklung der Luftqualität
- Prüfung der Genehmigungsvoraussetzung einer Anlage nach BImSchG und TA Luft

Lehrformen:
Vorlesung (3 SWS) und Praktikum (1 SWS)

Empfehlungen für die Teilnahme:
Kenntnisse der Grundlagen der Chemie

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Prüfung vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03%]

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)

Modulverantwortliche/r:
Frau Claudia Müller [Lehrbeauftragte]

Literatur:
- Bundesimmissionsschutzgesetz
- G. Baumbach, Luftreinhaltung, Springer Verlag
- F. Baum, Luftreinhaltung in der Praxis, Oldenbourg
- Tarbuck, Lutgens Allgemeine Geologie, Pearson Studium
- McKnight, Hess, Physische Geographie, Pearson Studium

3.8 Umweltmonitoring (WP)

<table>
<thead>
<tr>
<th>Umweltmonitoring (WP)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>UMON</td>
</tr>
<tr>
<td>Workload [Arbeitsaufwand]:</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Studiensemester:</td>
<td>3./5. Semester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>
Lehrveranstaltung:
<table>
<thead>
<tr>
<th>a) Vorlesung</th>
<th>Präsenzzeit:</th>
<th>Selbststudium:</th>
<th>Geplante Gruppen-größe:</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) Übungen und Exkursionen</td>
<td>4 SWS / 45 h</td>
<td>105 h</td>
<td>20 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: -
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/Kompetenzen:
Die Studenten lernen die Zielsetzungen und ausgewählte Methoden des Umweltmonitorings kennen. Sie sind in der Lage, auf spezifische Fragestellungen hin Monitoringkonzepte zu planen und durchzuführen, Monitoringdaten zu verwalten, einfache statistische Auswertungen durchzuführen und Monitoringergebnisse adäquat zu präsentieren.

Inhalte:
In diesem Kurs wird die Planung und Durchführung von Umweltmonitoringmaßnahmen erlernt. Die erhobenen Daten werden dokumentiert und statistischen Analysen unterzogen.

Konkrete Inhalte sind:
- Akteure, Anlässe und Ziele beim Umweltmonitoring
- Besonderheiten physikalischer, chemischer und biologischer Messgrößen
- Umweltindikatoren
- Sozio-ökonomische Bewertungen und Ökosystemleistungen
- Monitoringkonzepte entwickeln
- Feld- und Laborübungen zu ausgewählten Monitoringmethoden
- Daten- und Metadatenmanagement
- Grundlegende statistische Analysetechniken
- Präsentation und Kommunikation von Monitoringergebnissen

Lehrformen:
Vorlesung, Übung, Exkursion

Empfehlung für die Teilnahme:
keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf Grundlage einer schriftlichen Prüfung oder einer schriftlichen Ausarbeitung oder mündlichen Prüfung vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang;
5/180 (2,78 %) für 7-semestrigen Studiengang
3.9 Toxikologie

<table>
<thead>
<tr>
<th>Modulkürzel: TOXIKOL</th>
<th>Workload (Arbeitsaufwand): 150 Stunden</th>
<th>Dauer: 1 Semester</th>
</tr>
</thead>
</table>

Lehrveranstaltung:
- a) Vorlesung
- b) Seminar

Präsenzzeit:
- 2 SWS / 25 h
- 2 SWS / 25 h

Selbststudium: 100 h

Geplante Gruppengröße: 30 Studierenden

Verwendbarkeit des Moduls:
- Als Pflichtmodul: -
- Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:

Inhalte:
- Teil Grundlagen der Toxikologie und Humanantoxikologie:
- Geschichte, Aufgaben und Begriffe der Toxikologie; Toxikokinetik (Transport von Schadstoffen im Organismus), Toxikodynamik (Metabolisierung, Biotransformation von Schadstoffen), ausgewählte humane Organtoxikologie (Leber, Niere, Atemwege), Teratogenese, Wirkung von Bioziden, Behandlung von Vergiftungen, Chemikalienmanagement (REACH).
- Teil Ökotoxikologie:
- Transport-, Transfer- und Transformationsprozesse von Schadstoffen in der Umwelt, Bioverfügbarkeit, Bioakkumulation, Wirkungen auf Populationen, Lebensgemeinschaften und Ökosysteme; Risikoabschätzung, Prinzipien der Ökotoxikologie

Lehrformen:
Einführende Vorlesung sowie Seminarbeitteil mit Präsentationen der Studierenden

Empfehlungen für die Teilnahme:
Kenntnisse in der allgemeinen und anorganischen Chemie, sowie der organischen Chemie erwünscht

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf Basis einer Seminararbeit und Präsentation vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang; 5/180 (2,78 %) für 7-semestrigen Studiengang

Häufigkeit des Angebotes:
Jährlich

Modulverantwortliche/r:
Prof. Dr. Eckard Helmers

Literatur:
- Taschenatlas der Toxikologie: Substanzen, Wirkungen, Umwelt. F.-X. Reichl. Thieme-Verlag, 2009
4 Wahlpflichtmodul Umwelttechnik (Vertiefungsrichtung Energiemanagement)

Im Bereich der Umwelttechnik müssen von den Studierenden im 4. und 5. Semester insgesamt drei Module im Umfang von insgesamt 15 ECTS gewählt werden. Zu wählen ist aus folgenden Modulen:

4.1 Windenergie

<table>
<thead>
<tr>
<th>Windenergie</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel:</td>
<td>PLAWIN</td>
</tr>
<tr>
<td>Workload [Arbeitsaufwand]:</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td>Vorlesung</td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td>4 SWS / 45 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>105 h</td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>60 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: G
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/Kompetenzen:

Inhalte:
- Ressource Wind
- Standortbewertung und Standortauswahl
- Aufbau- und Typen von Windkraftanlagen
- Ertragsprognosen in kWh/Jahr und €/Jahr
- Aerodynamik
- Ertragsanalyse
- Ablauf des Genehmigungsverfahrenes und wesentliche Projektschritte von der Akquise bis zur Bauausführung
- Technische und naturschutzfachliche Restriktionen [Avifauna, Fledermäuse etc.]
- Einfache Stakeholderanalyse

Lehrformen:
Vorlesung mit Seminar zum Thema

Empfehlungen für die Teilnahme:
Keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer Klausur vergeben.
Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 [3,03 %]

Häufigkeit des Angebotes:
Jährlich [im Wintersemester]

Modulverantwortliche/r:
Modulbeauftragter: Prof. Dr. Henrik te Heesen
Lehrende: Externe Lehrbeauftragte aus der Wirtschaft

Literatur:
- S. Heier, Nutzung der Windenergie, 5. Auflage, Fraunhofer IRB Verlag
- V. Quaschnig. Regenerative Energiesysteme. Hanser-Verlag

4.2 Solar Energy

<table>
<thead>
<tr>
<th>Solar Energy</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul/ Module:</td>
<td></td>
</tr>
<tr>
<td>SOLAR</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand/ Workload:</td>
<td></td>
</tr>
<tr>
<td>150 hours</td>
<td></td>
</tr>
<tr>
<td>Dauer/ Duration:</td>
<td></td>
</tr>
<tr>
<td>1 semester</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung/ Type:</td>
<td></td>
</tr>
<tr>
<td>Vorlesung/ Lecture</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit/ Contact Hours:</td>
<td></td>
</tr>
<tr>
<td>4 SWS / 45 h</td>
<td></td>
</tr>
<tr>
<td>Selbststudium/ Self-Study:</td>
<td></td>
</tr>
<tr>
<td>105 h</td>
<td></td>
</tr>
<tr>
<td>Gruppengröße/ Group Size:</td>
<td></td>
</tr>
<tr>
<td>50 Studenten/ 50 students</td>
<td></td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: G
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/Kompetenzen/ Learning Goals:

The students know the basics of solar energy in particular photovoltaic and solar thermal systems. They recognize technical issues and are able to apply the knowledge to typical questions in solar energy.

Inhalte:
- Solare Einstrahlung
- Aufbau und Betrieb einer Solarzelle bzw. von Solarmodulen
Komponenten einer Photovoltaik-Anlage [Wechselrichter, Netzanbindung, Überwachung]
Planung, Bau und Betrieb einer PV-Anlage

Module Content:
- Sun and sun light
- Design and operation of a solar cell and module
- Components of a photovoltaic (PV) system (inverter, grid integration, monitoring)
- Life cycle of a PV system:
 - Planning
 - Construction
 - Operation
- Concept of solar thermal systems

Lehrformen/ Didactic Concept:
Vorlesung und Gruppenarbeit/ Lectures and group work

Empfehlungen für die Teilnahme/ Recommendations for Participation:
Grundlagen der Elektrotechnik und Physik/ Knowledge of electrical engineering and physics

Vergabe von Leistungspunkten/ Requirement for Awarding of ECTS Points:
Note und Leistungspunkte für dieses Modul werden zu 50% aus der Bewertung von schriftlichen Hausarbeiten und zu 50% aus einer Klausur vergeben.

Grade and credit points are awarded on the basis of homework (50 %) and a written exam (50 %).

Umfang und Dauer der Prüfung:

Size of the Assessment [Length / Duration]

Stellenwert der Note für die Endnote /Weight of Grade [% of credit]:
5/165 (3,03 %)

Häufigkeit des Angebotes/ Frequency:
Jährlich [jedes Sommersemester] / Annual [every summer semester]

Modulverantwortliche/r:
/ Responsible for Module:
Prof. Dr. Henrik te Heesen

Literatur/ Bibliography:
- Quaschning, Volker. Renewable Energy and Climate Change. Wiley. 2010
- DGS. Planning and Installing Solar Thermal Systems. Routledge. 2010
4.3 Bioenergie

<table>
<thead>
<tr>
<th>Bioenergie</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: BIOENER</td>
<td></td>
</tr>
<tr>
<td>Workload [Arbeitsaufwand]:</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Lehrveranstaltung: Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit: 4 SWS / 45 h</td>
<td></td>
</tr>
<tr>
<td>Selbststudium: 105 h</td>
<td></td>
</tr>
<tr>
<td>Geplante Gruppengröße:</td>
<td>60 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: G
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/Kompetenzen:

Inhalte:
- Einführung in das Themengebiet der Bioenergie (Systematik energetisch und stofflich nutzbarer Biomasse)
 - Energiepflanzen (Produktionsverfahren; Energiepotenziale) Biokraftstoffe (Rapsöl, BtL-Kraftstoffe u. ä.)
 - Festbrennstoffe (Holz, Stroh, Getreidekörner)
 - Biogas
- Gewinnung und Vorbehandlung
- Folgende Verfahren zur Umwandlung und Nutzung werden behandelt:
 - Verbrennung von Biomasse
 - Pyrolyseverfahren
 - Anaerobe Vergärung zur Gewinnung von Biogas
 - Aerobe Vergärungsverfahren
 - Hydrothermale Karbonisierung
- Energiewandlungssysteme (Gasmotor, Dampfturbine, Stirling-Motor)

Lehrformen:
Die Lehrveranstaltung ist eine Mischung aus Vorlesungen, dem Anfertigen von Ausarbeitungen und deren Präsentation durch die Studierenden

Empfehlungen für die Teilnahme:
Keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden aufgrund eines Vortrags oder einer Hausarbeit vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich [im Sommersemester]

Modulverantwortliche/r:
Prof. Dr. Michael Bottlinger

Literatur:

4.4 Netztechnologie

<table>
<thead>
<tr>
<th>Netztechnologie und Elektromobilität</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: NETZTECH</td>
<td>Workload [Arbeitsaufwand]: 150 Stunden</td>
</tr>
<tr>
<td>Lehrveranstaltung: Vorlesung</td>
<td>Präsenzzeit: 4 SWS / 45 h</td>
</tr>
<tr>
<td></td>
<td>Geplante Gruppengröße: 20 - 30 Studierende</td>
</tr>
</tbody>
</table>

Verwendbarkeit des Moduls:
Als Pflichtmodul: U, G
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/Kompetenzen:

Inhalte:
Durch den steigenden Anteil erneuerbarer Stromproduktion einerseits sowie die zunehmende Zahl an Elektroautos andererseits stoßen Stromnetze jedoch zukünftig lokal und überregional an Kapazitätsgrenzen. Das Modul führt daher in die Grundlagen...

Folgende Themen werden behandelt:

- Grundlagen der Energiewirtschaft
- Aufbau der Stromnetze in Deutschland und Europa
- Stromqualität und Kraftwerksregelung
- Netzstrukturen
- Numerische Berechnungsgrundlagen
- Lastflussberechnungen
- Entwicklung der Stromnetze zu Smart Grids
- Softwaregestützte Stromnetzauslegung
- Informations- und Kommunikationstechnologien im Kontext erneuerbarer Energieträger
- Virtuelle Kraftwerke
- Smart Markets
- Dezentrale Energiemanagementsysteme
- Demand Site Management/Demand Response
- Netzintegration von Elektrofahrzeugen
- Komponenten eines Elektrofahrzeuges
- Einführung in Elektromotoren
- Batterietechnik
- Beschreibung, Funktionen und Herausforderungen von Mobilität
- Bisherige technische Ansätze und Modelle zur Effizienzsteigerung und Emissionsminderung in der Mobilität
- Perspektiven zukunftsfähiger Mobilität [sustainable mobility]
- Ökobilanz von Elektrofahrzeugen

Lehrformen:
Vorlesung und Seminar mit studentischen Präsentationen. Integrierte Übungsvertiefung und Nachbereitung durch Aufgabenblätter.

Empfehlungen für die Teilnahme:
Englischkenntnisse mindestens B1 [Selbständige Sprachverwendung 1] gemäß GER [Gemeinsamer Europäischer Referenzrahmen für Sprachen], entsprechend UniCert I, KMK-Fremdsprachenzertifikat Stufe II

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf Grundlage einer Kombination aus Klausur und
mündlicher Prüfung vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich (im Sommersemester)

Modulverantwortliche/r:
Prof. Dr. Eckard Helmers, Prof. Dr.-Ing. Klaus Brinkmann

Literatur:

4.5 Umweltinformationssysteme

<table>
<thead>
<tr>
<th>Umweltinformationssysteme</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: UMWINSYS</td>
<td></td>
</tr>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td></td>
</tr>
<tr>
<td>150 Stunden</td>
<td></td>
</tr>
<tr>
<td>Dauer:</td>
<td></td>
</tr>
<tr>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltung:</td>
<td></td>
</tr>
<tr>
<td>Präsenzzeit:</td>
<td></td>
</tr>
<tr>
<td>Selbststudium:</td>
<td></td>
</tr>
<tr>
<td>Geplante Gruppen-</td>
<td></td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls:</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Als Pflichtmodul: M, F</td>
<td></td>
</tr>
<tr>
<td>Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernergebnisse/Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden kennen die Besonderheiten von Umweltdaten und der Architektur von UIS. Die Studierenden besitzen einen Überblick über bestehende Systeme und können WebTools zum Auffinden von Umweltinformation einsetzen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Im Rahmen der Veranstaltung werden neben den besonderen Eigenschaften von Umweltdaten und Umweltinformationen die verschiedenen Systemkomponenten von Umweltinformationssystemen vorgestellt. Im Schwerpunkt werden folgende Bereiche angesprochen:</td>
</tr>
<tr>
<td>• Methodenspektrum zur Erfassung von Daten zur Umwelt</td>
</tr>
<tr>
<td>• Grundlagen raumbezogener Informationssysteme</td>
</tr>
<tr>
<td>• Systemkomponenten von UIS</td>
</tr>
<tr>
<td>• Datenkataloge und Metainformationssysteme</td>
</tr>
<tr>
<td>• Methodenbanken (z.B. Decision Support, Prozessoptimierung)</td>
</tr>
<tr>
<td>• Nutzergerechte Datenaufbereitung und Visualisierung</td>
</tr>
<tr>
<td>• Rechtliche Rahmenbedingungen zum Zugang zu Umweltinformation</td>
</tr>
<tr>
<td>• Nationale und internationale operationelle Umweltinformationssysteme</td>
</tr>
<tr>
<td>Die begleitenden praktischen Übungen behandeln neben den Analysemöglichkeiten in einem Schwerpunkt auch die Besonderheiten bei der Visualisierung von Umweltdaten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung mit begleitenden praktischen Übungen (2+2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfehlungen für die Teilnahme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Datenverarbeitung, Interesse an der Thematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vergabe von Leistungspunkten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note und Leistungspunkte werden auf der Grundlage einer mündlichen oder schriftlichen Prüfung vergeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Umfang und Dauer der Prüfung:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Stellenwert der Note für die Endnote:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/180 (2,78 %)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Häufigkeit des Angebotes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jährlich (im Sommersemester)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Fischer-Stabel</td>
</tr>
</tbody>
</table>
Literatur:
- Fischer-Stabel (Hrsg.) (2005): Umweltinformationssysteme. - Wichmann Verlag, Heidelberg

4.6 Brennstoffzellen- und Batterietechnik
s. Seite 50

4.7 Hauptfachseminar Regenerative Energiesysteme I

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>Workload (Arbeitsaufwand): 150 Stunden</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-REGEN I</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Dauer: 1 Semester

Lehrveranstaltung: Seminar

Präsenzeit: 4 SWS / 45 h
Selbststudium: 105 h

Geplante Gruppengröße: 15 Studierende

Verwendbarkeit des Moduls:
Als Pflichtmodul: -
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog (Homepage unter „Infos aktuelles Semester“)

Lernergebnisse/ Kompetenzen:
Die Studierenden besitzen grundlegende Kenntnisse im Bereich der effizienten Energiennutzung und kennen die verschiedenen Konzepte. Nach erfolgreichem Abschluss des Moduls können die Studierenden den Energieverbrauch in Unternehmen evaluieren sowie Maßnahmen zur Energieeinsparung daraus ableiten.

Inhalte:
Im ersten Kursteil wird der Fokus auf Energiemanagementsysteme gelegt. Im Rahmen eines Projekts lernen die Studierenden dabei die einzelnen Schritte zur Reduktion des Energieverbrauchs im kommerziellen und industriellen Bereich kennen.
- Aufbau und Funktion von Energiemanagementsystemen
- Analyse von Energieverbrauchsdaten
- Durchführung von Energieverbrauchsmessungen
- Identifikation von Maßnahmen zur Reduktion von Energiekosten
- Planung und Auslegung von regenerativen Energiesystemen zur Unterstützung der Energieversorgung

Lehrformen:
Seminaristischer Unterricht

Empfehlungen für die Teilnahme:
Vertiefungsrichtung Regenerative Energiesysteme
Grundlegende mathematische und physikalische Kenntnisse

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer schriftlichen Ausarbeitung und eines Vortrags vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich (im Sommersemester)

Modulverantwortliche/r:
Prof. Dr. Henrik te Heesen

Literatur:
- ISO 50001 – Energiemanagementsysteme
- DIN EN 16247-1 Energieaudit
- weitere Literatur wird im Laufe des Hauptfachseminars angegeben

4.8 Energieeffizienz in der Raumlufttechnik (WP)

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>ENERAUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workload (Arbeitsaufwand):</td>
<td>150 Stunden</td>
</tr>
<tr>
<td>Dauer:</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltung:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Vorlesung</td>
<td></td>
</tr>
<tr>
<td>b) Übung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS / 22,5 h</td>
<td></td>
</tr>
<tr>
<td>2 SWS / 22,5 h</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Selbststudium:</th>
<th>105 h</th>
</tr>
</thead>
</table>

| Geplante Gruppengröße: | 10 bis 20 Studierende |

Verwendbarkeit des Moduls:
Als Pflichtmodul: -
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/Kompetenzen:
- Qualitative Ermittlung und Analyse der Energieströme von Gebäuden
- Auslegungs-, Berechnungs- und Optimierungskompetenz effizienter Energierückgewinnung und Luftfördersysteme
- Fähigkeit zur Modellierung und Analyse von Optimierungs- bzw. Einsparpotenzialen

Inhalte:
Das Modul vermittelt grundlegende Kenntnisse zur Energiebilanz von Gebäuden und
zur effektiven Nutzung der regenerativen und rekuperativen Energierückgewinnung aus lufttechnischen Prozessen [Raum- und Prozesslufttechnik] sowie zu Techniken der energieeffizienten Luftförderung.

- Energiebilanz von Gebäuden
- Grundlagen der Energierückgewinnung in Wohn- und Nutzgebäuden
- Thermodynamische Grundlagen
- Effiziente Luftförderung
- Wirtschaftlichkeitsberechnung

Lehrformen:
Vorlesung
Vertiefung der theoretischen Inhalte durch Berechnungsübungen
Vertiefung der Inhalte durch Projektierung von lufttechnischen Systemen
Vertiefung der Inhalte durch ein messtechnisches Praktikum [Labor]

Empfehlungen für die Teilnahme:
Grundlegende Kenntnisse der Thermodynamik und Strömungslehre werden empfohlen

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden auf der Grundlage einer Klausur vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %) für 6-semestrigen Studiengang;
5/180 (2,78 %) für 7-semestrigen Studiengang

Häufigkeit des Angebotes:
Jährlich (im Sommersemester)

Modulverantwortliche/r:
Prof. Dr.-Ing. Christoph Kaup, Dipl.-Wirtsch.-Ing. Daniela Brücher

Literatur:
- Wärmerrückgewinnung in raumlufttechnischen Anlagen, C.F. Müller Verlag, ISBN 3-8041-2233-7

4.9 Energiewirtschaftsrecht/Recht der Erneuerbaren Energien

<table>
<thead>
<tr>
<th>Energiewirtschaftsrecht/Recht der Erneuerbaren Energien</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulkürzel: Workload [Arbeitsaufwand]: Dauer:</td>
<td></td>
</tr>
</tbody>
</table>
ENWR/RD-EE 150 Stunden 1 Semester

Lehrveranstaltung: Präsenzzeit: Selbststudium: Geplante Gruppengröße:
Vorlesung 4 SWS / 45 h 105 h 70 Studierende
Übung
Fallbeispiele

Verwendbarkeit des Moduls:
Als Pflichtmodul: G
Als Wahlpflichtmodul: siehe Wahlpflichtmodulkatalog [Homepage unter „Infos aktuelles Semester“]

Lernergebnisse/Kompetenzen:

Energiewirtschaftsrecht
Die Studierenden verfügen durch eine praxisnahe Vorlesung im Wesentlichen über folgende Kompetenzen:
Kenntnisse der Grundstrukturen und der einschlägigen Rechtsvorschriften des Energiewirtschaftsrechts auf europäischer und nationaler Ebene
Inhaltliches Verständnis für die Ausgestaltung von Energielieferungsverträgen
Sie sind in der Lage die einschlägigen Rechtsschutzmöglichkeiten einzuschätzen
Und kennen die Schnittstellen zwischen europäischem Energierecht, nationalem Energierecht i.d.S und Kartellrecht und können diese an entsprechenden Fällen anwenden.

Recht der Erneuerbaren Energien
Mithilfe einer praxisnahen Vorlesung zum Recht der Erneuerbaren Energien erlangen die Studierenden folgende Kompetenzen:
Einsicht in die ökologische und wirtschaftliche Bedeutung des Rechts der Erneuerbaren Energien
Kenntnis der Grundstrukturen und der einschlägigen Rechtsvorschriften des Rechts der Erneuerbaren Energien auf europäischer und nationaler Ebene
Verständnis für die Grundsätze des Einspeise- und Förderregimes für Erneuerbare Energien
Kenntnis der planungs- und anlagenrechtlichen Flankierung des Förderregimes Erneuerbarer Energien
Einschätzung der einschlägigen Rechtsschutzmöglichkeiten.
Die Studierenden verfügen anschließend über die Grundkenntnisse des Rechts der Erneuerbaren Energien und sind in der Lage, rechtliche Fragestellungen zu den Erneuerbaren Energien einzuordnen und Lösungsvorschläge zu erarbeiten

Inhalte:
Überblick über die wesentlichen und in der Praxis relevantesten Felder des Energiewirtschaftsrechts auf der europäischen und nationalen Ebene, insbesondere
Historische Entwicklung der leitungsgebundenen Energiewirtschaft [Strom/ Gas]
Vorgaben des europäischen Energierechts [Primärrechtsliche Vorgaben/Sekundärrechtliche Gestaltung des Energiebinnenmarktes]
Nationale Rechtsgrundlagen, insbesondere:
Marktzutritt für Energieversorgungsunternehmen
Aufgaben der Netzbetreiber
Netzzugang
Netznutzungsentgelte
<table>
<thead>
<tr>
<th>Untitlted</th>
<th>Modulhandbuch Wirtschaftsingenieurwesen / Umweltplanung</th>
<th>Umwelt-Campus Birkenfeld</th>
</tr>
</thead>
</table>

Unbundling
Energielieferung an Letztverbraucher
Energiewirtschaftliche Betätigung von Kommunen
Konzessionsverträge
Planung von Erzeugungsanlagen und Transportnetzen
Energieaufsicht
Preissmissbrauchskontrolle
Rechtsschutzmöglichkeiten

Recht der Erneuerbaren Energien
Überblick über die wesentlichen und in der Praxis relevanten Bereiche des Rechts der Erneuerbaren Energien
Wirtschaftlich-technische Grundlagen und Potenziale von EE sowie deren Bedeutung im Rahmen der Energiwirtschaft nach der Energiewende
Vorgaben des europäischen Rechts, insbesondere der EE-Richtlinie
 Historie der gesetzlichen Regelungen zur Förderung von EE
 Zweck, Ziel und Anwendungsbereich des EEG
 Wichtige Definitionen, insbesondere Anlagenbegriff und Inbetriebnahme
 Netzanschluss, Netzausbau und Kostentragung
 Vorrang prinzip und Einspeisemanagement
 Grundlagen der Vergütungsberechnung, Zahlungsanspruch und Verringerungen
 Überblick über die Direktvermarktung
 Grundlagen der allgemeinen und besonderen Ausschreibungsbestimmungen
 EEG-Umlagepflicht und Eigenversorgung
 Besondere Ausgleichsregelung für stromkostenintensive Unternehmen
 Grundzüge des Planungs- und Zulassungsrechts für EE-Anlagen, insbesondere am Beispiel von Windenergieanlagen an Land
 Rechtsschutzfragen bei der Zulassung von EE-Anlagen

Lehrformen:
Vorlesung, Gruppenarbeit, Exkursion

Empfehlungen für die Teilnahme:
Keine

Vergabe von Leistungspunkten:
Note und Leistungspunkte werden aufgrund einer Klausur vergeben.

Umfang und Dauer der Prüfung:

Stellenwert der Note für die Endnote:
5/165 (3,03 %)

Häufigkeit des Angebotes:
Jährlich (im Wintersemester)
5 Wahlpflichtmodule
Die Studierenden haben grundsätzlich die freie Wahl ihrer Wahlpflichtmodule. Sie kön-
nen sie u.a. auch aus dem Wahlpflichtkatalog wählen, der jedes Semester vom Fachbe-
reichsrat beschlossen wird.