

w
w

w
.o

ek
o

.d
e

Reference:
Kern, Eva; Hilty, Lorenz M.; Guldner, Achim; Maksimov, Yuliyan V.; Filler, Andreas; Gröger, Jens; Naumann, Stefan
(2018): Sustainable software products-Towards assessment criteria for resource and energy efficiency. In: Future
Generation Computer Systems, Volume 86, September 2018, pp. 199-210, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2018.02.044

Set of criteria for
sustainable software

Lorenz Hilty, Stefan Naumann,

Yuliyan Maksimov, Eva Kern,

Andreas Filler, Achim Guldner

Jens Gröger

Version 01

Effective: 31.05.2017

Project contact persons

Dipl.-Ing. Jens Gröger

Oeko-Institut e.V.

Phone +49 30 40 50 85 378, j.groeger@oeko.de

Prof. Dr. Stefan Naumann

Trier University of Applied Sciences, Environmental Campus Birkenfeld

Phone +49 6782 17 12 17, s.naumann@umwelt-campus.de

Prof. Dr. Lorenz Hilty

University of Zurich

Phone +41 44 635 67 24, hilty@ifi.uzh.ch

© Öko-Institut, Hochschule Trier, Universität Zürich. Alle Rechte vorbehalten.

UFOPLAN research project „Sustainable Software Design -
Entwicklung einer Methodik zur Bewertung der

Ressourceneffizienz von Softwareprodukten“
code number: 3715 37 601 0

By order of the German Federal Environmental Agency

https://doi.org/10.1016/j.future.2018.02.044
mailto:j.groeger@oeko.de
mailto:s.naumann@umwelt-campus.de
mailto:hilty@ifi.uzh.ch

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 2 / 30

Table of contents

Introduction 4

1 Resource efficiency 7

1.1 Hardware efficiency ... 7

1.1.1 Recommended system requirements and resulting hardware requirements (including peripheral

devices) ... 10

1.1.2 Minimum system requirements and resulting hardware requirements (including peripheral

devices) ... 10

1.1.3 Hardware utilization in idle mode assuming a standard configuration 11

1.1.4 Hardware utilization during normal use assuming a standard configuration and a standard usage

scenario... 11

1.1.5 Economical use of hardware through adaptability and support for users when adapting the

software product .. 12

1.1.6 Online delivery .. 12

1.2 Energy efficiency ... 12

1.3 Resource management .. 13

1.3.1 Adaptation of hardware capacities used to current demand ... 14

1.3.2 Adaptation of hardware capacities used to current supply ... 14

1.3.3 Default settings supporting resource conservation .. 14

1.3.4 Feedback on use of hardware capacities and energy ... 14

2 Potential hardware operating life 15

2.1 Backward compatibility ... 15

2.2 Platform independence and portability .. 16

2.3 Hardware sufficiency ... 16

3 User autonomy 17

3.1 Transparency and interoperability .. 17

3.1.1 Transparency of data formats and data portability ... 17

3.1.2 Transparency and interoperability of the programs .. 18

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 3 / 30

3.1.3 Continuity of the software product .. 18

3.1.4 Transparency of task management .. 18

3.2 Uninstallability ... 19

3.2.1 Uninstallability of programs ... 19

3.2.2 Capability to erase data .. 19

3.3 Maintenance functions .. 19

3.3.1 Recoverability of data ... 19

3.3.2 Self-recoverability ... 20

3.4 Independence of outside resources ... 20

3.4.1 Offline capability ... 20

3.5 Quality of product information .. 20

3.5.1 Comprehensibility and manageability of product documentation, licensing conditions, and terms of

use... 20

3.5.2 Resource relevance of product information ... 21

Appendix A: Classification of application software 22

Appendix B: Impact model 23

Appendix C: Glossary 24

Appendix D: Bibliography 26

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 4 / 30

Introduction

This document is the outcome of the first of five work packages in the German Federal Environment

Agency's UFOPLAN project “Sustainable software design—Development and application of criteria for

resource-efficient software products with consideration of existing methods.”

The goal of the project is to develop a method for evaluating the environmental impacts of software

products. This method is intended to support both the procurement of software products with

consideration of environmental criteria and the development of resource-efficient software. In particular,

the method is supposed to enable a comparison of two given software products with similar functionality

in terms of their impacts on natural resources. Based on the formulation of ambitious minimum standards,

the method will also help to define criteria for awarding an environmental or quality label to sustainable

software products.

Thus, the project makes a contribution to expanding the focus of “Green IT” beyond the hardware level to

include the software level. Since software products are immaterial goods, one problem arising is to capture

the indirect material impacts of these products in conceptual and methodological terms.

A product's environmental impacts generally occur through the use of natural resources1 during the life

cycle of the product. We take on this life-cycle perspective in relation to software products as well (see

figure 1). We take into account that the hardware needed to operate a software product must be produced,

supplied with electricity, and disposed of at the end of its useful life. Thus, every software product is

responsible for a quantifiable fraction of the life cycle of all the hardware products required for its operation

(programmable devices of any kind, peripheral devices, and storage media).

Figure 0-1 Life cycles of hardware and software (horizontal dimension) and the resource use induced by the life cycles

(vertical dimension)

Because it takes a life-cycle perspective, this approach can be expanded to include the social aspects of

producing the raw materials as well as the working conditions in hardware production and disposal; our

focus is on the environmental aspects.

At the software level, we intentionally limit our perspective to the use phase in the following. The goal of

the criteria defined here is to evaluate a software product on the basis of characteristics that are observable

1 Definitions of “resource” and other key terms are provided in the glossary. In this document, we reserve the term “resource”

for natural resources and mostly avoid the technical term “hardware resource” by describing hardware resources directly in
terms of capacities, i.e., quantifiable aspects of their performance.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 5 / 30

in the use phase, be it by the users themselves or by persons conducting special tests. In principle, it would

also be possible to take the production phase of software into account by broadening the approach.

However, evaluating the process of software development seems less important to us than influencing it,

among other things by making recommendations addressed to those responsible for software

development. A software development guide will be prepared in a later phase of this project.

In general, we examine standard application software in this project, in other words, neither system

software nor special application software for a small number of users. In the latter case, the resources

required for development would surely have to be included.

As a matter of principle, especially the evaluation of widespread software products requires not just a

snapshot, but consideration of the use of the software product (including several versions) over longer

periods of time. Only from this perspective does the question as to software-induced purchasing of

hardware become relevant, for example.

Expressed in abstract terms, our analysis focuses on two flows caused by a software product:

• the flow of hardware through the organization using it (new hardware to waste),

• the flow of energy through the hardware (electricity to waste heat).

If a software product causes significantly lower hardware and energy flows than competing products with

similar functionality, then it can be considered “sustainable.”2

The resource consumption induced by the flow of hardware can be estimated by applying life cycle

assessment (LCA) methods. Life cycle inventories for production and disposal of the most important

hardware components exist for this purpose, and we take them as given without entering a detailed

discussion. Energy flow can also be evaluated with LCA methods; the various methods for generating

electricity have been examined sufficiently; therefore, we also take this data as given.

That is why it is sufficient to use the criteria developed in this project to address the impact of software on

the required hardware capacities. If one imagines a chain of impacts from software characteristics to

natural resource use, then we analyze exclusively the section of the chain of impacts from the software to

the hardware products and their electricity consumption3, because it is the only part that is specific to our

object of investigation.

Practicable criteria are necessary to be able to assess the sustainability of software with reference to the

hardware and energy flows it induces. These criteria can then be applied, e.g., to inform those responsible

for software development or software procurement or to award an environmental label.

The set of criteria proposed here focuses on environmental impacts resulting from the operation of a

software product. This does not rule out that the awarding of environmental labels also includes further

criteria regarding the process of software development (e.g., compliance with ILO 4 standards when

outsourcing programming work), the functionality of the software (e.g., accessibility, or exclusion of

particular categories such as violent games), or other aspects. It seems important to us, however, to treat

the impacts of software characteristics on natural resource consumption as a clearly defined object of

2 The functionality of a software product, and thus its utility, will not be evaluated here. The goal is exclusively to estimate and

evaluate the amount of resource use it induces. A given amount of useful work can be related to the amount of resource use
induced to determine efficiency.

3 In some cases, it may be necessary to broaden this perspective and take the flow of consumables such as paper or toner through
the hardware into account, analogously to the flow of energy. Whether this is the case for a given software product and which
consumables are relevant can be decided based on a first screening.

4 International Labour Organization

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 6 / 30

research from the outset and not to confound it with other questions. Studies and criteria are available for

many of these neighboring questions and can be used to complement our set of criteria.

A tree (a hierarchy) of criteria and indicators is described on the following pages. The leaves of the tree are

indicators serving to operationalize the relevant higher-level criterion. This document's table of contents

provides a complete overview of the criteria.

An evaluation model whose structure we will lay out in this project will later be applied to combine

(arithmetically or logically) the indicators to criteria and then to combine the criteria to higher-level

criteria. The actual evaluation by means of weighting, normalization functions, or designating mandatory

criteria remains up to the German Federal Environment Agency or other organizations applying our criteria

and may change over time.

Weighting of indicators and criteria may vary depending on the class of software in an existing evaluation

model. In particular, indicators or criteria can be assigned a weight of zero if they are not applicable or

irrelevant to certain classes of software. We have developed a classification of software products that is

adapted to the application of our criteria (see also Appendix A).

• local application

• application with remote data storage

• application with remote processing

• remote service

These four classes are relevant to our approach as they attempt to encompass not only the resource

consumption induced by local execution of the software, but also the resource consumption induced

remotely, from network infrastructure to dedicated servers to the cloud. Otherwise, the approach would be

useless because the criteria could be fulfilled by shifting environmental impacts elsewhere. A detailed

impact model describing the various impact paths from software characteristics via hardware capacities to

natural resources can be found in Appendix B.

In the following main section of this document, each criterion is characterized by

• a one- to three-digit number, depending on its level,

• a designation (heading),

• a question explaining the criterion,

• a comment following the question, as appropriate.

Each criterion in the lowest position in the hierarchy is operationalized by indicators identified with a

lower-case letter.

This tree of criteria and indicators is based on a comprehensive literature research on criteria for evaluating

software analyzing more than 130 such criteria from more than 60 sources. A draft of the set of criteria was

discussed with experts from the scientific community, public agencies, and industry at a stakeholder

workshop on 11 March 2016. The participants' feedback during and after the workshop was taken into

consideration during the revision of the document.

Some of the following criteria and indicators refer to a “reference system,” a “standard configuration,” or a

“standard usage scenario”; these and other key concepts are defined in the glossary.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 7 / 30

1 Resource efficiency

To what extent are hardware capacities used, and therefore, to what extent are natural

resources consumed indirectly, when a given function is performed?

This main criterion assumes that a given functionality can be fulfilled by a software product using different

amounts of hardware capacities, which indirectly results in different amounts of natural resource

consumption required for hardware provision, operation, and disposal.

The ideal is a software product that achieves a given functionality with minimum resource consumption,

i.e., that maximizes resource efficiency (see glossary). Functionality is specified by standard usage scenarios

(see glossary). The hardware capacities to be made available and those actually used as well as the energy

consumed serve as approximations for estimating natural resource consumption.

1.1 Hardware efficiency

Which hardware capacities must be available for operating the software product and what is

the degree of capacity utilization during operation?

Hardware capacities are measured in % of the corresponding capacity of a reference system5. They can be

differentiated according to two dimensions: (Table 1). On one dimension, they are differentiated in local,

network and remote capacities. Here, we further distinguish in recommended (1.1.1) and minimum (1.1.2)

capacities as well as capacities required in idle mode (1.1.3) and during the execution of a standard usage

scenario (1.1.4). On the other dimension, we differentiate according to the type of hardware capacity:

processing power, working memory, permanent storage, bandwidth, and display resolution. The matrix is

open to the addition of new columns in case new categories of hardware will become relevant in the future.

Table 1-1 Differentiation of hardware capacities in two dimensions. The numbers refer to the criteria explained in the

following sections, the letters refer to the indicators.

Processing

power
Working
memory

Permanent
storage

Bandwidth
Display

resolution

Local

recommended

minimum

idle

standard usage

1.1.1 a)

1.1.2 a)

1.1.3 a)

1.1.4 a)

1.1.1 b)

1.1.2 b)

1.1.3 b)

1.1.4 b)

1.1.1 c)

1.1.2 c)

1.1.3 c)

1.1.4 c)

- 1.1.1 d)

1.1.2 d)

Network

recommended

minimum

idle

standard usage

- - - 1.1.1 e)

1.1.2 e)

1.1.3 d)

1.1.4 d)

-

Remote

recommended

minimum

idle

standard usage

1.1.1 f)

1.1.2 f)

1.1.3 e)

1.1.4 e)

1.1.1 g)

1.1.2 g)

1.1.3 f)

1.1.4 f)

1.1.1 h)

1.1.2 h)

1.1.3 g)

1.1.4 g)

- -

Each cell of the matrix in Table 1-1 shows the associated criterion (e.g., 1.1.1) with the corresponding

indicator (e.g. a)) for operationalization. The criteria and indicators will be described in the following

5 Application of the set of criteria requires that a reference system corresponding to current technical developments is

determined periodically. The reference system serves to standardize indicators.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 8 / 30

sections, which are numbered accordingly. Not all of the criteria 1.1.1 to 1.1.4 are applicable in all the matrix

cells. For this reason, some of the cells remain empty.

Criteria 1.1.5 and 1.1.6 are used for the assessment of hardware efficiency as well. They can be assessed in

general terms; they do not require differentiation according to this matrix and do not show up in Table 1-1

for this reason.

When these criteria are to be aggregated later, the principal problem arises that a trade-off between

different hardware capacities (local vs. remote, processing power vs. working memory, processing power

for data compression vs. bandwidth, etc.) must be made. If it were possible to evaluate the hardware

capacities in the form of an ecological footprint, they could be weighted and aggregated in that regard.

Assessing this footprint is not part of the work reported here; we refer the reader to existing life cycle

inventories for ICT hardware and electric energy as a basis for aggregation.

Table 1-2 Basic definitions for the measurement of the criteria 1.1.3 and 1.1.4.

Identifier Name Definition Comment

FLi full load Upper limit of the capacity i
in the reference system.

For processing power, the FL is 100%, for
working memory the sum of the installed RAM,
for network bandwidth the maximum
transmission speed, etc.

BLi base load Average load of the capacity i
in the reference system when
the software product under
study is not installed

ILi idle load Average load of the capacity i
in the reference system when
the software product under
study is installed, but idle.

Idle load includes base load.

NILi net idle load NILi = ILi – BLi

t time Time needed to execute the
standard usage scenario on
the reference system.

Begins with the start of the standard usage
scenario and ends when all required actions
are executed, including follow-up processes
(such as releasing memory or deleting
temporary files).

GLi gross load Load of the capacity i in the
reference system while
executing the standard usage
scenario, measured as time-
weighted average over t.

NLi net load NLi = GLi – BLi

AFi allocation
factor

AFi = NLi / (FLi – BLi) Allocation factor used to assign a share of the
base load GA to the effective load EL (defined
below).

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 9 / 30

AFIi allocation
factor idle

AFIi = NILi / (FLi – BLi) Allocation factor used to assign a share of the
base load GA to the effective load idle ELI
(defined below).

ELi effective load ELi = NLi + AFi * BLi

EILi effective load
idle

EILi = NILi + AFIi * BLi Used to calculate the indicators for hardware
demand of criterion 1.1.3

HDi hardware
demand

HDi = ELi * t Used to calculate the indicators for hardware
demand of criterion 1.1.4

For practical purposes, it is sufficient to calculate the allocation factors AF and AFI for criteria 1.1.3 and

1.1.4, in particular for processing power (indicators a. and e.) and working memory (indicators b. and f.).

For all other indicators (c., d., g.) the allocation factors can be set to zero, i.e., it can be assumed that EL = NL

and EIL = NIL for simplicity.

Figure 1-1 illustrates the process of measuring hardware capacity load by executing a standard usage

scenario.

Figure 1-1 Exemplary measurement process of hardware capacity load

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 10 / 30

1.1.1 Recommended system requirements and resulting hardware requirements (including
peripheral devices)

Which system requirements does the manufacturer recommend for operating the software

product?

Indicators:

a) Recommended local processing power as specified by the manufacturer in % of the

processing power of the reference system

b) Recommended local working memory as specified by the manufacturer in % of the working

memory of the reference system

c) Recommended local permanent storage as specified by the manufacturer in % of the

permanent storage of the reference system

d) Recommended display resolution as specified by the manufacturer in % of the display

resolution of the reference system

e) Recommended network bandwidth as specified by the manufacturer in % of the network

bandwidth of the reference system

f) Recommended server processing power as specified by the manufacturer in % of the

processing power of the reference system

g) Recommended server working memory as specified by the manufacturer in % of the server

working memory of the reference system

h) Recommended server permanent storage as specified by the manufacturer in % of the server

permanent storage of the reference system

1.1.2 Minimum system requirements and resulting hardware requirements (including
peripheral devices)

What are the minimum system requirements for operating the software product?

Indicators:

a) Minimum local processing power as specified by the manufacturer in % of the processing

power of the reference system

b) Minimum local working memory as specified by the manufacturer in % of the working

memory of the reference system

c) Minimum local permanent storage as specified by the manufacturer in % of the permanent

storage of the reference system

d) Minimum display resolution as specified by the manufacturer in % of the display resolution of

the reference system

e) Minimum network bandwidth as specified by the manufacturer in % of the network

bandwidth of the reference system

f) Minimum server processing power as specified by the manufacturer in % of the processing

power of the reference system

g) Minimum server working memory as specified by the manufacturer in % of the server

working memory of the reference system

h) Minimum server permanent storage as specified by the manufacturer in % of the server

permanent storage of the reference system

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 11 / 30

1.1.3 Hardware utilization in idle mode assuming a standard configuration

What is the level of utilization of the available hardware capacities by the software product in

idle mode?

Indicators:

a) Measurement of average processor utilization in idle mode under the standard configuration

b) Measurement of average working memory utilization in idle mode under the standard

configuration

c) Measurement of average permanent storage utilization in idle mode under the standard

configuration

d) Measurement of average bandwidth utilization for network access in idle mode under the

standard configuration

e) Measurement of average server processor utilization in idle mode under the standard

configuration

f) Measurement of average server working memory utilization in idle mode under the standard

configuration

g) Measurement of average server permanent storage utilization in idle mode under the

standard configuration

Average processor load (indicators a. and e.) and average working memory load (indicators b. and f.) are

calculated as effective idle load EIL (see Table 1-2).

1.1.4 Hardware utilization during normal use assuming a standard configuration and a standard
usage scenario

What is the average utilization of the available hardware capacities during operation of the
software product?6

It should be noted here that utilization of hardware capacities is understood as a variable integrated over

time. If, for example, program A requires twice as much processing power, working memory, or bandwidth

as program B to accomplish a given standard usage scenario, but makes the processor, memory, or

bandwidth available again after half the period of time required by B, then according to this criterion, A is

not less efficient than B. (This is not the case for criteria 1.1.1 to 1.1.3.) Thus, the use of acceleration

technologies is not penalized by this criterion.

Indicators:

a) Measurement of average processor utilization when running the standard usage scenario

under the standard configuration

b) Measurement of average working memory utilization when running the standard usage

scenario under the standard configuration

c) Measurement of average permanent storage utilization when running the standard usage

scenario under the standard configuration

d) Measurement of average bandwidth utilization for network access when running the standard

usage scenario under the standard configuration

e) Measurement of average server processor utilization when running the standard usage

scenario under the standard configuration

f) Measurement of average server working memory utilization when running the standard

usage scenario under the standard configuration

6 Average capacity utilization determines which free hardware capacities can be used by other software products during

operation of the software product.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 12 / 30

g) Measurement of average server permanent memory utilization when running the standard

usage scenario under the standard configuration

Hardware demand for processor load (indicators a. and e.) and average working memory load (indicators

b. and f.) are calculated as defined in Table 1-2.

1.1.5 Economical use of hardware through adaptability and support for users when adapting the
software product

Does the software product use only those hardware capacities required for running the

functions demanded by the individual user? Does the software product provide sufficient
support when users adapt it to their needs?7

Indicators:

a) Does the software automatically minimize the required capacities and/or are there relevant

options available during installation? (Scale: yes/no)

b) If users choose an option, can they change the decision for or against installation options at

any later point in time? (Scale: yes/ no)

c) Black box test whether hardware-intensive modules can be disabled (Scale: can permanently

be disabled/can temporarily be disabled/cannot be disabled)

d) Is it possible (without drawbacks) to disable peripheral devices that are not needed

temporarily or permanently or to avoid providing them at all? (Scale: can be disabled

temporarily and permanently/can be disabled only temporarily/cannot be disabled)

e) Will files used only for installing the product be deleted after installation?

1.1.6 Online delivery

Can the software product (including all programs, data, and documentation including

manuals) be purchased, installed, and operated without transporting physical storage media

(including paper) or other materials goods (including packaging)?

Indicators:

a) Can the software be delivered and updated online?

b) Is it supported that the user organization can store the software product and its updates on a

local server, avoiding transferring them for every single user?

1.2 Energy efficiency

How much electricity does the hardware consume when the software product is used to
execute a standard usage scenario?8

The consumption of electric energy is a consequence of the utilization of hardware capacities. How to

measure hardware utilization has already been described in section 1.1.4 above. In parallel to those

measurements, the electrical power demanded by the hardware should be measured (or estimated) as well,

7 No utilization of capacities by functionality temporarily or permanently not demanded by the user.

8 Use of electricity is a consequence of the use of hardware capacities already discussed in section 1.1. This implies that this
criterion is redundant. However, the redundancy is desired since energy can be measured separately and not all sub criteria of
hardware efficiency (1.1) are operationalizable.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 13 / 30

at least for the entirety of hardware used locally, for data transmission in the network or remotely,

respectively.

Indicators:

a) Measurement of the energy consumed on the local device for running the standard usage

scenario under the standard configuration

b) Estimation of the energy consumed in the network for the data traffic caused by running the

standard usage scenario under the standard configuration (a current estimate of network

energy intensity in kWh/GB from literature may be used, if necessary differentiated among

types of access network)

c) Measurement of the energy consumed by servers for the remote processing and storage for

running the standard usage scenario under the standard configuration (if measurement not

possible, an estimate based on factors for average energy intensity of data center services

from literature may be used)

The electric energy consumed is the integral of electric power over the time needed for the execution of the

standard usage scenario. Departing from the specifications provided to measure hardware load (section

1.1.4), only net indicators will be used for the energy measurements (indicators a. and c.), i.e., only the

quantity that exceeds the level of the electric base load. This is done to increase practicability (calculating

an allocation factor for electricity may be difficult because a true upper limit for electric power is sometimes

not known). It also adds to the clarity of the results of the energy measurements if base load energy is not

included when comparing software products.

1.3 Resource management

To what extent does the software product contribute to efficient management of the resources

it uses during operation?

Since the extent to which a given software product is used may vary, adaptive demand for hardware

capacities that is supported by the software product contributes to resource conservation. Hardware

capacities not in use can potentially be used by other processes or reduce their energy consumption. Both

options contribute indirectly to natural resource conservation.

In contrast to criteria 1.1 and 1.2, this criterion refers to adapting the demand for hardware capacities at

the program's runtime, in particular the transition to less energy-consuming modes, dependent on the

current user requirements or the available hardware capacities or energy. In other words, while resource

efficiency in the various modes was addressed by criteria 1.1 and 1.2, the focus here is on the ability to

switch between modes depending on context.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 14 / 30

1.3.1 Adaptation of hardware capacities used to current demand

Does the software product have the feature to release hardware capacities (and reduce

energy consumption as a consequence) when it doesn’t temporarily use these capacities?

Indicators:

a) Does the software product have different modes which have a measurable effect on energy

consumption?

b) Does the software product dynamically change to a more energy saving mode when possible

(e.g. sleep mode)?

c) In case the user has to make energy-relevant settings, are these settings concentrated in one

place and easily understandable for the user?9

1.3.2 Adaptation of hardware capacities used to current supply

Is the software product able to dynamically adapt its demand for hardware capacities and

energy when the supply is changing? (e.g., when the available bandwidth is decreasing or

battery is low)

Indicators:

a) Does the software product switch to a more economical mode when less hardware capacity or

energy is available, avoiding errors or loss of data? (no restrictions, slower execution, error

during execution)

b) Is the full software functionality available in if the energy management of lower system layers

or connected client systems is activated?10

1.3.3 Default settings supporting resource conservation

Are the default settings of the software product selected in such a way that they also take the
goal of resource conservation into account?11

Indicators:

a) Reviewer's assessment whether the default settings of the software product are selected in

such a way that they also take the goal of resource conservation into account

1.3.4 Feedback on use of hardware capacities and energy

Can the local and remote hardware capacities used by the software product and their

resulting energy consumption be monitored, and are the displayed values correct?

Indicators:

a) Are the hardware capacities in use, data flow, and energy consumption displayed? (Scale:

yes/to some extent/no)

b) Assessment by the reviewer whether the display is correct

9 Examples: Background/sleep settings, animations, computing-intensive processes such as indexing etc., cache sizes, ability to

select the time at which processes are executed to take advantage of ecologically more beneficial energy (demand shaping).

10 In particular server-based software should avoid that activating the energy management on client side hampers the
functionality. For example, no session information should be lost if the client computer enters sleep mode.

11 Example: Default setting for printing: Double-sided printing if the printer has this capability?

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 15 / 30

2 Potential hardware operating life

To what extent are hardware replacement cycles decoupled from software replacement
cycles?12

Software imposes requirements on the hardware on which it is executed. The faster these requirements

increase as the software product is developed further, and the more specific they are, the more they limit

the use of hardware products already in existence. If existing hardware products cannot be used, or can no

longer be used, to execute the given software product, then this shortens the operating life of the hardware.

The ideal is a software product whose development dynamics permit operators to manage their hardware

products independently of these dynamics, i.e., decouple hardware management from software

management.

2.1 Backward compatibility

Does the manufacturer of the software product guarantee that the current release can be
executed on a reference system that is n years old?13

Indicators:

a) Initially use the specification by the manufacturer (hardware, older operating systems, older

frameworks), since no standard configurations have been defined for previous years.

b) When this criterion has been applied for a long enough time period, so that the standard

usage scenario can also be executed on earlier standard configurations as well: Can the

standard usage scenario still be executed with the current release of the software product on

a configuration that was the standard configurations n years ago (n still needs to be

specified)?

12 Decoupling software and hardware replacement cycles amounts to long potential hardware operating life. Basic assumption:

Every software product requires a system environment as the platform on which it is executed. The system environment is
defined as the sum of the hardware and software components of the ICT system that are required for executing the software
product. The software product itself can be part of the system environment of other software products. Example: A web
browser requires an operating system, additional system software, and hardware as a system environment, and at the same
time it constitutes the system environment for a web application. From the perspective of a given software product, the
following question is crucial to understand its influence on hardware operating life: when the software product is replaced by
a newer version, which requirements to the lowest level—the hardware—does this generate via the intermediate levels of the
system environment?

13 Thus, the software product can be executed on a standard hardware configuration that has already been in operation for n
years.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 16 / 30

2.2 Platform independence and portability

Can the software product be executed on different currently prevalent productive system

environments (hardware and software), and can users switch between them without
disadvantages?14

Indicators:

a) Manufacturer specifications (compatible with various operating systems, runtime

environments).

b) Execute standard usage scenario on various currently prevalent productive system

environments and check for portability of data and software settings.

2.3 Hardware sufficiency

Does the amount of hardware capacity used remain constant over time as the software

product is developed further and additional functions are added?

This criterion rewards software manufacturers who make it easy for their customers to continue to use

their existing hardware. It intentionally does not take into account whether functionality is expanded.

Sufficiency means that the amount of resources required will not increase even if the utility they provide

increases (which is possible, after all, because of increasing efficiency).

The ideal is a software product that fulfills more and more requirements from one version to the next, but

nonetheless does not increase its hardware requirements.

This criterion can be applied only when products have already been assessed several times, i.e., when at

least one previous result is available.

Indicators:

a) intertemporal comparisons with the following imaginable results:

1. “very good”: To date, new versions have resulted in a decrease in the hardware capacities

required.

2. “good”: To date, new versions have resulted in no increase in the amount of hardware

capacities required.

3. “sufficient”: Although to date, new versions have increased the amount of hardware

capacities required, the increases have not overcompensated for the efficiency

improvements due to technical factors as exhibited by the succession of reference systems

over time.

4. “insufficient”: Because of new versions, the required hardware capacities have increased

faster than technical efficiency.

14 We recommend that this criterion should not be considered one of the minimum requirements because in principle, there

could be very resource-efficient software that runs on just one platform. Nonetheless, platform independence is to be
considered beneficial since it gives users more freedom when optimizing procurement of hardware and system software.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 17 / 30

3 User autonomy

Does the manufacturer of the software product respect user autonomy in dealing with the

purchased product?

This main criterion assumes that a relevant number of users is interested in using software in a resource-

efficient way. If they can do so without functional disadvantages, they will try to work with a small amount

of hardware capacity (which they generally pay for) and keep energy consumption low (which is also

financially relevant or at least impacts the battery life of mobile devices). However, users can do so only if

they are not forced to consume unnecessary amounts of resources and if they understand how they can

avoid unnecessary resource consumption.

The ideal is a software product that respects the freedom of users to decide about utilizing hardware

capacities (and thus indirectly about using resources) when using the product, as far as possible.

The following criteria are to be evaluated from the perspective of target groups that are not technical

specialists; in other words, they will generally not be fulfilled simply by the fact that an expert can fulfill

them. Criterion 3.1.2 is an exception in this regard.

3.1 Transparency and interoperability

Can users understand resource-relevant aspects of the software product with a reasonable

amount of time and effort? Are they free to re-use data they produced with this software

product with other software products?

3.1.1 Transparency of data formats and data portability

Is sufficient documentation provided for the data formats (file or data stream formats) used

by the software product to enable interoperability? Do the data formats comply with open
standards enabling further use of the data with another software product?15

To apply this criterion, it must first be defined which standards are considered open standards at the time

of awarding a label.

Indicators:

a) Review of manuals and technical data sheets, comparison with known open standards

b) Check of compliance with known and open standards.

15 This is decisive to prevent customer lock-in (dependence on the software product), which may force unnecessary resource

consumption, both in the case of retaining an inefficient product and in the case of switching to a different product, which may
require resources as well.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 18 / 30

3.1.2 Transparency and interoperability of the programs

Are application programming interfaces (APIs) clearly documented, and are dissemination

and further development of the program supported? Do the interfaces comply to open

standards to enable interoperability?

Weighting of indicators may be highly dependent on context. The effects of open source code and licensing

models on resource use cannot be assessed in terms of a general rule.

Indicators:

a) If APIs exist: Review of the documentation of the interfaces on the basis of the documentation

of the software product and its APIs

b) Is the source code open?

c) Is the software released under a license that allows it to further develop it?

3.1.3 Continuity of the software product

Can the software product be used for longer periods of time without serious negatives (in

particular IT security problems) occurring, and does the user have the option to avoid
unnecessary updates?16

Indicators:

a) How long is the time period for which the supplier guarantees future support for the product,

including security updates?

b) Does the manufacturer respond promptly when security gaps (vulnerabilities) become

known?

c) Can the user influence the frequency of updates by configuring the software product and

when doing so differentiate between security updates and other updates?

d) Is it possible to receive differential updates only?17

3.1.4 Transparency of task management

Does the software product inform users that it is automatically launching or running tasks in

the background that are possibly not being used?

Indicators:

a) On the basis of the installation and the execution of standard usage patterns, test which

processes are automatically launched by the software product and whether it informs users of

this (Scale: informs users of all such processes/informs users of some such processes/does

not inform users)

b) If the software product is automatically launched at system start (“autostart”): does it inform

users that this is the case?

c) If the user carries out an action that can be understood as ending the program, but at least one

of the tasks remains active: does the software product inform the user that this is the case?

16 A high frequency of updates causes resource consumption and makes it more difficult to maintain transparency. It is difficult

to define the “necessity” of updates objectively; however, it makes at least sense to differentiate between security-relevant
(and thus doubtless necessary) updates and other updates; this is addressed by indicator b).

17 This avoids replacing the entire program, which can cause significant resource consumption if performed frequently.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 19 / 30

3.2 Uninstallability

Can the software product be uninstalled easily, without leaving traces, and without avoidable

disadvantages?

3.2.1 Uninstallability of programs

Does the user receive sufficient support to uninstall the program without leaving traces?

Indicators:

a) Uninstallation of the software and comparison with the condition prior to installation, which

must be identical.

3.2.2 Capability to erase data

Does the user receive sufficient support when erasing data generated during operation of the

software product as desired?

This criterion is intended specially to avoid the case that compliance with high IT security standards

following uninstallation of the software product can be guaranteed only by physically destroying hardware.

Indicators:

a) After erasing of the data explicitly stored by the user and comparison with the condition prior

to installation, are the two states identical in relevant respects?

b) Does the software product provide transparency about the places where it stores data?

c) Is the user supported in erasing data stored on remote storage devices without leaving

traces?

3.3 Maintenance functions

Does the software product provide easy-to-use functions permitting users to repair damage to

data and programs?

3.3.1 Recoverability of data

Can the data be recovered in its last condition following an abnormal termination?

Indicators:

a) Does the manufacturer provide specifications and can they be validated by means of a test?

b) Can the user set the periodicity at which changes are automatically saved?

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 20 / 30

3.3.2 Self-recoverability

Can the installed instance of the software product be recovered following the occurrence of an

inconsistent state?

Indicators:

a) Manufacturer specifications and review by means of a test

3.4 Independence of outside resources

Can the software product be operated as independently as possible of resources not subject to

the users' control?

3.4.1 Offline capability

To what extent does the software product avoid forced connectivity that is not necessary for

providing the functionality?18

Indicators:

a) Testing on the basis of the standard usage scenario (Scale: offline operation possible/possible

with limitations/impossible)

3.5 Quality of product information

Does the information provided about the software product support its resource-efficient use?

3.5.1 Comprehensibility and manageability of product documentation, licensing conditions, and
terms of use

Is all the information easy for users to understand?

Indicators:

a) Inspection by reviewers; test with actual users

18 Examples of unnecessarily forced connectivity: establishing a connection to the license server, repeated download of fonts

required.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 21 / 30

3.5.2 Resource relevance of product information

Does the product information include everything that users need to minimize resource

consumption by the software product in a structured form, and is the information correct?

The long-term goal is to develop standardized product descriptions for resource-relevant product

information. As soon as a satisfactory standard exists in this regard, compliance with it can be included as

an indicator.

Indicators:

a) Qualitative assessment of completeness and comprehensibility

b) Does the product information refer to the current version of the product?

c) Inspection whether the information is correct (information is conclusive / partially conclusive

/ non-conclusive)

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 22 / 30

Appendix A: Classification of application software

Classification of application software in terms of the software architecture

Focus: Division of work between client and server

Explanations:

• Presentation layer: the parts of the software product responsible for interaction with users.

• Logic layer: the functional core of the software product; it includes all processing mechanisms and

access to the data layer.

• Data layer: the parts of the software product responsible for storing and accessing data, e.g., in a

database.

Colors indicate ranges of percentage of the total load caused by using the software product between zero

(green) and 100% (red).

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 23 / 30

Appendix B: Impact model

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 24 / 30

Appendix C: Glossary

Energy efficiency: Generally, the amount of “useful work” divided by the amount of energy it requires. In the

context of this document, “useful work” is operationalized as the successful execution of standard usage

scenarios.

Hardware: The material goods required to run programs or to store or transport data.

Hardware capacity: Quantifiable characteristic of a hardware system which represents its performance

limit on a given dimension of performance (e.g., working memory capacity, computing power, bandwidth).

Hardware system: Delimitable unit of hardware that performs defined functions.

Indicator: An empirically determinable quantity that provides insight into a matter that cannot be measured

directly. The indicators proposed in this document have different levels of measurement. In some cases,

researchers will have to settle for an ordinal scale (e.g., “insufficient”, “sufficient”, “good”, “very good”, or

even merely “fulfilled”, “not fulfilled”) to avoid giving the false impression of non-existent precision arising

from a cardinal scale.

Reference system: A hardware system that is defined as generally customary in terms of its most important

capacities (e.g., working memory, processor performance) during a defined period of time (e.g., one year).

The purpose of the reference system is to be able to express indicators such as “minimum local memory” in

relation to a reference value (currently “customary” memory).

Resource: In the context of this document, a natural resource, in particular a raw material, a form of energy,

or also the capacity of an environmental medium to absorb emissions. To differentiate natural resources

from technical ones, especially hardware resources, the more precise term “hardware capacities” is used

here for the latter. Since using hardware capacities always results in using natural resources, this

distinction (which ultimately amounts to a definitionally difficult differentiation between the ecosphere

and the technosphere) is not of decisive importance here.

Resource efficiency: Generally, the amount of “useful work” divided by the amount of resources it requires.

In the context of this document, “useful work” is operationalized as the successful execution of standard

usage scenarios.

Software: Programs and data in digital form.

Software product: A delimitable unit of programs and data for which a license is available.

Standard configuration: A set of conditions, defined as a reference, under which a given software product is

run; it includes the parameter settings selected during installation or operation, the system software

provided, potentially additional software products required for operation, as well as the reference system

at the hardware level.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 25 / 30

Standard usage scenario: A usage scenario that is used for testing a software product and is supposed to be

as representative as possible for the customary use case.

Usage pattern: Abstracted form of a sequence of interactions with a given software product.

Usage scenario: Description of a usage pattern which is generally machine executable.

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 26 / 30

Appendix D: Bibliography

Abdullah, Rusli; Abdullah, Salfarina; Din, Jamilah; Tee, Mcxin; others (2015): A Systematic Literature

Review of Green Software Development in Collaborative Knowledge Management Environment. In:

International Journal of Advanced Computer Technology (IJACT) 9, S. 136.

Abdullah, Rusli; Abdullah, Salfarina; Tee, Mcxin (2014): Web-based knowledge management model for

managing and sharing green knowledge of software development in community of practice. In:

Software Engineering Conference (MySEC), 2014 8th Malaysian. IEEE, S. 210–215.

Afgan, Naim Hamdia (2010): Sustainability paradigm: intelligent energy system. In: Sustainability 2 (12), S.

3812–3830.

Afzal, Shehla; Saleem, M. Faisal; Jan, Fahad; Ahmad, Mudassar (2013): A Review on Green Software

Development in a Cloud Environment Regarding Software Development Life Cycle:(SDLC) Perspective.

In: International Journal of Computer Trends and Technology (IJCTT) 4 (9), S. 3054–3058.

Agarwal, Shalabh; Nath, Asoke; Chowdhury, Dipayan (2012): Sustainable Approaches and Good Practices

in Green Software Engineering. In: IJRRCS 3 (1), S. 1425–1428. Available online scholarlyexchange.org,

zuletzt geprüft am 15.03.2012.

Ahmad, Ruzita; Baharom, Fauziah; Hussain, Azham (2014): A Systematic Literature Review on

Sustainability Studies in Software Engineering. In: Proceedings of KMICe. Knowledge Management

International Conference (KMICe) 2014. Malaysia, 12 – 15 August 2014.

Albertao, Felipe (2004): Sustainable Software Engineering. Carnegie Mellon University Silicon Valley.

Available online www.scribd.com, zuletzt aktualisiert am 04.09.2008, zuletzt geprüft am 30.11.2010.

Albertao, Felipe; Xiao, Jing; Tian, Chunhua; Lu, Yu; Zhang, Kun Qiu; Liu, Cheng (2010): Measuring the

Sustainability Performance of Software Projects. In: IEEE Computer Society (Hg.): 2010 IEEE 7th

International Conference on e-Business Engineering (ICEBE 2010), Shanghai, China. Technical

Committee on Electronic Commerce (TCEC), S. 369–373. Available online doi.ieeecomputersociety.org,

zuletzt geprüft am 04.03.2011.

Amsel, Nadine; Ibrahim, Zaid; Malik, Amir; Tomlinson, Bill (2011): Toward sustainable software

engineering (NIER track). In: Proceedings of the 33rd International Conference on Software

Engineering. ACM, S. 976–979.

Ardito, Luca; Morisio, Maurizio (2014): Green IT - Available data and guidelines for reducing energy

consumption in IT systems. In: Sustainable Computing: Informatics and Systems 4 (1), S. 24–32.

RAL-UZ 161, 2012-07: Basic Criteria for Award of the Environmental Label Energy-Conscious Data Centers.

Available online www.eco-institut.de

Berkhout, Frans; Hertin, Julia (2001): Impacts of Information and Communication Technologies on

Environmental Sustainability: speculations and evidence. Report to the OECD. Hg. v. Organisation for

Economic Co-operation and Development OECD. Brighton. Available online www.oecd.org, zuletzt

geprüft am 02.03.2011.

Bouwers, Eric; van Deursen, Arie; Visser, Joost (2013): Evaluating usefulness of software metrics: an

industrial experience report. In: Proceedings of the 2013 International Conference on Software

Engineering. IEEE Press, S. 921–930.

Bozzelli, Paolo; Gu, Qing; Lago, Patricia (2013): A systematic literature review on green software metrics.

Technical Report: VU University Amsterdam.

http://scholarlyexchange.org/ojs/index.php/IJRRCS/article/view/9903/7030
http://www.scribd.com/doc/5507536/Sustainable-Software-Engineering#about
http://doi.ieeecomputersociety.org/10.1109/ICEBE.2010.26
http://www.eco-institut.de/fileadmin/contents/Nationale_Pruefzeichen/BlauerEngel/113-1106-e.pdf
http://www.oecd.org/dataoecd/4/6/1897156.pdf

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 27 / 30

Calero, C.; Bertoa, M.F; Angeles Moraga, M. (2013a): A systematic literature review for software

sustainability measures. In: Green and Sustainable Software (GREENS), 2013 2nd International

Workshop on, S. 46–53.

Calero, Coral; Bertoa, Manuel F.; Moraga, Maria Ángeles (2013b): Sustainability and Quality: Icing on the

Cake. In: RE4SuSy@RE. Citeseer.

Calero, Coral; Moraga, M.; Bertoa, Manuel F. (2013c): Towards a software product sustainability model. In:

arXiv preprint arXiv:1309.1640.

Calero, Coral; Moraga, Maria Ángeles; Bertoa, Manuel F.; Duboc, Leticia (2015): Green Software and

Software Quality. In: Coral Calero und Mario Piattini (Hg.): Green in Software Engineering: Springer, S.

231–260.

Capra, E.; Francalanci, C.; Slaughter, S. A. (2012): Measuring Application Software Energy Efficiency. In: IT

Professional, S. 54–61.

Capra, Eugenio; Francalanci, Chiara; Slaughter, Sandra A. (2011): Is software green? Application

development environments and energy efficiency in open source applications. In: Information and

Software Technology 54, S. 60–71.

Dick, Markus; Naumann, Stefan (2010): Enhancing Software Engineering Processes towards Sustainable

Software Product Design. In: Klaus Greve und Armin B. Cremers (Hg.): EnviroInfo 2010: Integration of

Environmental Information in Europe. Proceedings of the 24th International Conference on

Informatics for Environmental Protection, October 6 - 8, 2010, Cologne/Bonn, Germany. Aachen:

Shaker, S. 706–715.

EPA ENERGY STAR (2014): ENERGY STAR Program Requirements Product Specification for Computers:

Eligibility Criteria, Version 6.1. Environmental Protection Agency. Available online

www.energystar.gov.

EPA Office of Air and Radiation, Climate Protection Partnerships Division (2015): National Awareness of

ENERGY STAR for 2014. Analysis of CEE Household Survey. Hg. v. U.S. Environmental Protection

Agency. Available online www.energystar.gov.

Erdmann, Lorenz; Hilty, Lorenz M.; Goodman, James; Arnfalk, Peter (2004): The Future Impact of ICTs on

Environmental Sustainability. Technical Report EUR 21384 EN. Hg. v. Carlos Rodríguez Casal, Christine

Van Wunnik, Luis Delgado Sancho, Jean Claude Burgelman und Paul Desruelle. European Commission;

Joint Research Centre; IPTS - Institute for Prospective Technological Studies. Seville (Technical Report

Series, EUR 21384 EN). Available online ftp.jrc.es, zuletzt geprüft am 26.07.2011.

Europäische Union (Hg.) (2011a): Beschluss der Kommission vom 6. Juni 2011 zur Festlegung der

Umweltkriterien für die Vergabe des EU-Umweltzeichens für Notebooks. (Bekannt gegeben unter

Aktenzeichen K(2011) 3736)Text von Bedeutung für den EWR. Available online eur-lex.europa.eu.

Europäische Union (2011b): Beschluss der Kommission vom 9. Juni 2011 zur Festlegung der

Umweltkriterien für die Vergabe des EU-Umweltzeichens für Tischcomputer. (Bekannt gegeben unter

Aktenzeichen K(2011) 3737)Text von Bedeutung für den EWR. Available online eur-lex.europa.eu.

Finkbeiner, Matthias; Schau, Erwin M.; Lehmann, Annekatrin; Traverso, Marzia (2010): Towards life cycle

sustainability assessment. In: Sustainability 2 (10), S. 3309–3322. Available online www.mdpi.com.

Fujitsu Technology Solutions (Hg.) (2010): Green Label-Kategorien bei Fujitsu Technology Solutions. White

Paper.

http://www.energystar.gov/sites/default/files/specs/Version%206%201%20Computers%20Final%20Program%20Requirements.pdf
https://www.energystar.gov/sites/default/files/asset/document/National_Awareness_of_ENERGY_STAR_2014_v6_508_1.pdf
http://ftp.jrc.es/EURdoc/eur21384en.pdf
http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:22012D0201
http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32015D2056
http://www.mdpi.com/2071-1050/2/10/3309/pdf

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 28 / 30

Fujitsu Technology Solutions (Hg.) (2012): Green Label Levels at Fujitsu Technology Solutions. White

Paper. Available online globalsp.ts.fujitsu.com, zuletzt aktualisiert am 25.04.2012, zuletzt geprüft am

02.01.2013.

GeSI, Global e-Sustainability Initiative; The Climate Group (2008): SMART 2020: Enabling the low carbon

economy in the information age.

Gröger, Jens; Köhn, Marina; Albers, Erik; Löhr, Patrik; Lohmann, Wolfgang; Naumann, Stefan (2015):

Nachhaltige Software. Dokumentation des Fachgesprächs „Nachhaltige Software“ am 28.11.2014. Hg.

v. Umweltbundesamt. Öko-Institut e.V. Dessau-Roßlau. Available online www.umweltbundesamt.de.

Gröger, Jens; Quack, Dietlinde; Grießhammer, Rainer; Gattermann, Marah (2013): TOP 100 -

Umweltzeichen für klimarelevante Produkte: Freiburg. Available online www.ecodialog.de.

Held, Alexandra (2010): Entwicklung und Operationalisierung von Kriterien zur Bewertung der

Nachhaltigkeit von Softwareprodukten. Abschlussarbeit zur Erlangung des akademischen Grades

Master of Science eingereicht am Umwelt-Campus Birkenfeld. Masterarbeit. Fachhochschule Trier,

Standort Umwelt-Campus Birkenfeld, Hoppstädten-Weiersbach. ISS Institut für Softwaresysteme in

Wirtschaft, Umwelt und Verwaltung.

Hilty, Lorenz; Lohmann, Wolfgang; Behrendt, Siegfried; Evers-Wölk, Michaela; Fichter, Klaus; Hintemann,

Ralph (2015): Grüne Software. Schlussbericht zum Vorhaben: Ermittlung und Erschließung von

Umweltschutzpotenzialen der Informations- und Kommunikationstechnik (Green IT). Studie im

Auftrag des Umweltbundesamtes, Berlin, Förderkennzeichen 3710 95 302/3 (im Druck).

Horne, Ralph E. (2009): Limits to labels: The role of eco-labels in the assessment of product sustainability

and routes to sustainable consumption. In: International Journal of Consumer Studies 33 (2), S. 175–

182. Available online 19-659-fall-2011.wiki.uml.edu.

Kern, Eva; Dick, Markus; Naumann, Stefan; Guldner, Achim; Johann, Timo (2013): Green Software and Green

Software Engineering – Definitions, Measurements, and Quality Aspects. In: Lorenz M. Hilty, Bernard

Aebischer, Göran Andersson und Wolfgang Lohmann (Hg.): ICT4S ICT for Sustainability. Proceedings

of the First International Conference on Information and Communication Technologies for

Sustainability, ETH Zurich, February 14-16, 2013. Zürich: ETH Zurich, University of Zurich and Empa,

Swiss Federal Laboratories for Materials Science and Technology, S. 87–94. Available online e-

collection.library.ethz.ch.

Koçak, Sedef Akınlı; Calienes, Giovanna Gonzales; Alptekin, Gülfem Işıklar; Bener, Ayşe Başar (2013):

Requirements Prioritization Framework for Developing Green and Sustainable Software using ANP-

based Decision Making. In: EnviroInfo, S. 327–335.

Koçak, Sedef Akınlı; Alptekin, Gülfem Işıklar; Bener, Ayşe Başar (2014): Evaluation of Software Product

Quality Attributes and Environmental Attributes using ANP Decision Framework. In: Proceedings of

the Third International Workshop on Requirement Engineering for Sustainable Systems (pp. pp. 37-

44). Karlskrona: Central Europe Workshop Proceedings. Available online ceur-ws.org

Lago, Patricia; Jansen, Toon; Jansen, Marten (2010): The service greenery-integrating sustainability in

service oriented software. In: International Workshop on Software Research and Climate Change

(WSRCC), co-located with ICSE, Bd. 2.

Lago, Patricia; Koçak, Sedef Akinli; Crnkovic, Ivica; Penzenstadler, Birgit (2015): Framing sustainability as

a property of software quality. In: Communications of the ACM 58 (10), S. 70–78.

http://globalsp.ts.fujitsu.com/dmsp/Publications/public/wp-green-label.pdf
http://www.umweltbundesamt.de/publikationen/nachhaltige-software
http://www.ecodialog.de/oekodoc/1739/2013-433-de.pdf
http://19-659-fall-2011.wiki.uml.edu/file/view/Limits%20to%20Labels%20The%20role%20of%20eco-labels%20in%20the%20assessment%20of%20product%20sustainability.pdf/248421211/Limits%20to%20Labels%20The%20role%20of%20eco-labels%20in%20the%20assessment%20of%20product%20sustainability.pdf
http://e-collection.library.ethz.ch/eserv/eth:6558/eth-6558-01.pdf
http://e-collection.library.ethz.ch/eserv/eth:6558/eth-6558-01.pdf
http://ceur-ws.org/Vol-1216/paper7.pdf

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 29 / 30

Lami, Giuseppe; Fabbrini, Fabrizio; Fusani Mario (2012): Software Sustainability from a Process-Centric

Perspective. In: D. Winkler, R.V O’Connor und R. Messnarz (Hg.): EuroSPI 2012, CCIS 301: Springer, S.

97–108.

Mazijn, B.; Doom, R.; Peeters, H.; Vanhoutte, G.; Spillemaeckers, S.; Taverniers, L. et al. (2004): Ecological,

Social and Economic Aspects of Integrated Product Policy. Integrated Product Assessment and the

Development of the Label ̀ Sustainable Development´ for Products. CP/20. SPSD II - Part I - Sustainable

production and consumption patterns. Available online www.bernardmazijn.be.

Naumann, Stefan; Dick, Markus; Kern, Eva; Johann, Timo (2011): The GREENSOFT Model: A Reference

Model for Green and Sustainable Software and its Engineering. In: SUSCOM 1 (4), S. 294–304. DOI:

10.1016/j.suscom.2011.06.004.

Penzenstadler, Birgit; Mahaux, Martin; Salinesi, Camille (2013): RE4SuSy: Requirements Engineering for

Sustainable Systems. In: Journal of Systems and Software.

Prakash, Siddharth; Manhart, Andreas; Stratmann, Britta; Reintjes, Norbert (2008): Environmental product

indicators and benchmarks in the context of environmental labels and declarations. Öko-Institut e.V.;

Ökopol GmbH.

Schipper, Irene (2015): TCO Certified Smartphones versusFairphone. A comparison of sustainability

criteria. Hg. v. GoodElectronics Network Südwind. Stichting Onderzoek Multinationale

Ondernemingen (SOMO), Centre for Research on Multinational Cooperations, Netherlands.

Amsterdam.

Schmidt, Benno (2014): Strategien für eine integrativ-nachhaltige Software-Entwicklung. Hochschule

Bochum, Fachbereich Geodäsie. Bochum (14-02).

Schmidt, Benno; Wytzisk, Andreas; Plödereder, In E.; Grunske, L.; Schneider, E.; Ull, D.; others (2014):

Software Engineering und Integrative Nachhaltigkeit. In: Erhard Plödereder, Lars Grunske, Eric

Schneider und Dominic Ull (Hg.): INFORMATIK 2014. Big Data – Komplexität meistern. – Proceedings.

2. Workshop "Umweltinformatik zwischen Nachhaltigkeit und Wandel (UINW) / Environmental

Informatics between Sustainability and Change"), 26.09.2014, im Rahmen der INFORMATIK 2014, 22.-

26.09.2014 in Stuttgart. P-232: Lecture Notes in Informatics (LNI), S. 1935–1945.

Scholl, Gerd; Simshäuser, Ulla (2002): Machbarkeitsuntersuchung für Umweltzeichen-Analyse der

Möglichkeiten zur Akzeptanzerhöhung des Umweltzeichens" Blauer Engel" für Haushaltsgroßgeräte

(" Weiße Ware") bei potenziellen Zeichennehmern: Umweltbundesamt. Available online

www.umweltbundesamt.de.

Stieß, Immanuel; Birzle-Harder, Barbara (2013): Der Blaue Engel – ein Klassiker mit Potenzial: eine

empirische Studie zu Verbraucherakzeptanz und Marktdurchdringung des Umweltzeichens.

Sundblad, Yngve; Lind, Torbjörn; Rudling, Jan (2002): IT product requirements and certification from the

users’ perspective. In: Proceedings of WWDU 2002 Conference, S. 280–282. Available online

http://cid.nada.kth.se/pdf/CID-176.pdf

International Standard ISO/IEC 25010:2011, 01.03.2011: Systems and software engineering -- Systems and

software Quality Requirements and Evaluation (SQuaRE) -- System and software quality models.

Taina, Juha (2011): Good, Bad, and Beautiful Software - In Search of Green Software Quality Factors. In:

CEPIS UPGRADE XII (4), S. 22–27. Available online www.cepis.org, zuletzt geprüft am 09.01.2012.

TCO Development (Hg.) (2012): TCO Certified Notebooks 4.0. Available online tcodevelopment.com.

http://www.bernardmazijn.be/fileadmin/pdf/sd-label_products_bernardmazijn.pdf
http://www.umweltbundesamt.de/sites/default/files/medien/publikation/short/k2169.pdf
http://cid.nada.kth.se/pdf/CID-176.pdf
http://www.cepis.org/upgrade/media/taina_2011_41.pdf
http://tcodevelopment.com/files/2012/12/TCO-Certified-Notebooks-4.0_eco-templates.pdf

Set of criteria for sustainable software / UFOPLAN research code number: 3715 37 601 0

page 30 / 30

Teufel, J.; Rubik, F.; Scholl, G.; Stratmann, B.; Graulich, K.; Manhart, A. (2009): Untersuchung zur möglichen

Ausgestaltung und Marktimplementierung eines Nachhaltigkeitslabels zur Verbraucherinformation.

In: Project report of the Öko-Institut e. V. in cooperation with the Institut für ökologische

Wirtschaftsforschung (IÖW) GmbH. Freiburg: Öko-Institut e. V. Available online download.ble.de.

Umweltbundesamt (Hg.) (2013): Ökodesign-Richtlinie <Computer und Computerserver>. Available online

www.umweltbundesamt.de.

Vergabegrundlage für Umweltzeichen RAL-UZ 100, 2014-06: Vergabegrundlage für Car-Sharing.

Vergabegrundlage für Umweltzeichen RAL-UZ 78a, 2014-11: Vergabegrundlage für Umweltzeichen -

Computer.

Walch, Isabelle (2015): Standard ECMA-370. TED - The ECO Declaration. Hg. v. ecma INTERNATIONAL.

Waller, Lars (2015): TCO Certified Desktops 5.0 - Critera Document and Certification Process. TCO

Development. Available online tcodevelopment.com, zuletzt aktualisiert am 11.11.2015.

Warschun, Mirko; Rühle, Jens (2008): Zwischen ÖkoLabels, grüner Logistik und fairem Handel

Lebensmitteleinzelhandel auf der Suche nach Wegen zur Nachhaltigkeit.

http://download.ble.de/08HS031.pdf
https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/datenblatt_oekodesign-richtlinie_computer_und_computerserver.pdf
http://tcodevelopment.com/files/2015/12/TCO-Certified-Desktops-5.0.pdf

