
Markus Dick, Stefan Naumann

{m.dick, s.naumann}(at)umwelt-campus.de

Trier University of Applied Sciences, Umwelt-Campus Birkenfeld

Campusallee, D-55768 Hoppstädten-Weiersbach, Germany

http://www.green-software-engineering.de/

This presentation corresponds to the following paper:

Dick, Markus; Naumann, Stefan: Enhancing Software Engineering 

Processes towards Sustainable Software Product Design. In: Greve, Klaus; 

Cremers, Armin B.: EnviroInfo 2010. Integration of Environmental 

Information in Europe. Proceedings of the 24th International Conference on 

Informatics for Environmental Protection, Cologne/Bonn, Germany. Aachen: 

Shaker Verlag, 2010, pp. 706 - 715.

The project “Green Software Engineering” (GREENSOFT) is sponsored by 

the German Federal Ministry of Education and Research under reference 

17N1209. The contents of this document are the sole responsibility of the

authors and can under no circumstances be regarded as reflecting the position 

of the German Federal Ministry of Education and Research.

1



The power consumption of data centres in the world increased from 58 TW h 

in 2000 to 123 TW h in 2005, and is still increasing.

Hence, reducing the consumption of energy and natural resources caused by 

ICT is necessary. Where manifold efforts exist in the field of computer 

hardware (that is: Green-IT), there is a lack of models, descriptions, or 

realizations in the field of computer software.

Especially, there are hardly any systematic methods available that try to 

integrate sustainability aspects into software product design and development, 

as it is common today for material products like cars, light bulbs or computer 

hardware. Furthermore, well-known textbooks on software engineering like 

Sommerville or Balzert that are used in lectures do not even mention 

sustainability aspects of software.

Additionally, up to now it is not clear what the terms “sustainable software” 

and “sustainable software engineering” mean or what they are.

2



3



4



In this and in the following definition, we understand direct impacts as energy 

and resource demand that is necessary to “produce” use and dispose of the 

software product.

Indirect impacts are effects that result from using the software product on 

other processes, and long term systemic effects resulting from software usage.

Development, deployment, usage, and disposal address the whole lifecycle of 

a software product in analogy to ordinary “non-virtual” product lifecycles.

5



6



7



If you look at the phases of our lifecycle model, you will recognize that it is 

more a product life cycle in the sense of Life Cycle Thinking (also attributed 

as a “cradle-to-grave approach”) than an ordinary software life cycle or 

software development process, because these are usually focusing on 

development phases and development activities.

This model mainly fits standard software products. For custom software 

products the phase “Acquisition” follows close upon the phase “Product 

Definition”.

8



This lifecycle model has two objectives:

Its first objective is to assign criteria to the different lifecycle phases that lead 

to or result in sustainability relevant effects.

9



Its second objective is to provide starting points for activities that hopefully 

lead to more sustainable software products.

Now, let us have a look on some example criteria.

10



Please, note that these examples are far from complete.

Appropriate criteria for the development phase are:

Working Conditions of offshore workers

Business trips for meetings with the development team

Energy for the necessary IT infrastructure

Office heating and air conditioning

11



Appropriate criteria for the distribution phase are

Printed manuals

Packaging 

Data medium

Download size (if you software product is offered as a download)

Some of these relate directly to criteria of the disposal phase, like

The disposal of printed manuals

data mediums

packaging

12



Examples of criteria for the usage phase are:

Accessibility issues

Screen size requirements

Hardware requirements

Memory and processor usage during program execution

13



We are focusing on two starting points:

First, according to our given definitions, the software development process 

itself should be optimized in order to mitigate negative impacts or to enforce 

positive impacts that result from it.

14



Second, during development, the positive or negative impacts that are 

expected to arise from distribution and future use of the software product 

should be continuously anticipated, assessed and reflected on by involved 

actors.

The outcomes of these assessments and reflections should then be used to 

take action towards a more sustainable software product.

15



16



For this introductory overview, we are using a simple “waterfall-like” 

software development process with the exception that the different 

development phases are executed in parallel rather than strictly sequential.

This is the more general case and enables us to subsume processes like the 

Unified Process with this model.

17



This general process is enhanced by several activities that have the objective to enable sustainable 

software engineering. These activities are: Sustainability Reviews & Previews, Process Assessment, 

and the Sustainability Retrospective

Sustainability Reviews & Previews mainly consider impacts on sustainability which are expected to 

arise from distribution and future use of the software product. In this activity, actors take a look at the 

work done and assess outcomes according to sustainability criteria. This is the review part. 

As the preview part, actors develop and realize measures until the next Review & Preview in order to 

optimize the sustainability of the software product.

Sustainability Review & Previews take place after one-half or two-thirds of a process phase. This 

enables actors to realize software design or implementation alternatives within the same phase.

Depending on the length of a phase, it may be necessary to perform multiple Reviews & Previews.

Reviews & Previews are a team facilitation approach. Involved actors review and assess their artefacts

(e.g. requirements, architecture, coding) and develop and assess alternative solutions in order to choose 

the better “more sustainable” solution.

The continuous Process Assessment activity quantifies and assesses impacts on sustainability, which 

result from the software development process itself. Criteria of the Development Lifecycle Phase e.g.

transportation for daily way to work, working conditions (offshore workers), business trips, energy for 

ICT, office HVAC, pro rata impacts of common corporate departments.

Thus, Sustainability Reviews & Previews and Process Assessment covers our two starting points of 

activities, which I mentioned earlier.

At the end of the development process, the Sustainability Retrospective combines the results of 

Reviews & Previews (mainly impacts that are expected from the usage phase) and Process 

Assessments (mainly impacts that result from the development phase). Thus it covers impacts over the 

whole lifecycle of the software product. The outcomes should be reported to stakeholders of the 

software product.

Additionally, it looks for ways to improve upcoming software development projects and their resulting 

software products in some kind of a team learning approach.

The expected outcomes of this learning approach can be e.g. decisions for future projects, lessons 

learned, best practices regarding sustainability issues of software products or development processes.

18



The Sustainability Journal is the information hub of our process 

enhancements. It is a well structured report, which evolves simultaneously 

with the software project. Its purpose is to document Sustainability Reviews 

& Previews, Process Assessment and the Sustainability Retrospective.

Finally, after the project has finished, it reports the assessed impacts on 

sustainability.

19



20



21



Now I will show, how we tailored our proposed enhancements so that it fits a 

non-waterfall-like approach.

For this purpose, we chose Scrum, because it is quite different from the 

waterfall-like-approach that I used initially to show how our enhancements 

work in principle.

Scrum is a “low ceremony” and agile software development process, which 

was developed by Ken Schwaber and others.

With Scrum, a piece of software is developed by several month-long 

iterations, so called Sprints.

Each Sprint delivers a potentially shippable software product increment.

Besides these Sprints, Scrum does not define special development phases or 

activities, like design, implementation, testing, etc.

Such activities occur implicitly within a sprint, just when they are needed by 

developers.

Each Sprint ends with a so called Sprint Review. Here, the product increment 

is presented to the Product Owner, customers, management, etc.

The Product Owner is a representative of all stakeholders and he accepts or 

rejects the work results of the recent Sprint.

22



According to our proposal, Sustainability Reviews & Previews should take 

place after two-thirds of a Sprint. This enables the development team to 

implement more sustainable alternatives within the current sprint and to 

deliver an potentially shippable product increment at the end of the Sprint.

The outcomes of the Reviews & Previews should be reported to the 

stakeholders during Sprint Reviews.

The Sustainability Retrospective should take place just before the end of the 

last Sprint. Thus, the development team is able to report the combined 

assessment results to the stakeholders in the final Sprint Review meeting.

After the project has finished, the team should discuss the other aspects of the 

Sustainability Retrospective, like e.g. decisions for future projects, lessons 

learned, or best practices regarding sustainability issues. This ensures that the 

team can discuss and reflect on these aspects without pressure, which 

hopefully leads to better results.

23



As a first step, we applied our process enhancements to a small one-month 

Scrum-driven student software project with 3 participants. This project had 4 

one-week Sprints. Of course, these Sprints were too short, but during these 

Sprints, the students accomplished 3 Sustainability Reviews & Previews and 

1 Sustainability Retrospective.

It came out that decisions on software architecture based upon memory and 

consumed processing time according to our sustainability criteria are difficult 

to prepare.

This has several reasons:

Developers need appropriate tools like e.g. profilers and performance test 

tools, especially when they use programming languages that automatically 

handle memory allocation.

The results of these tools depend on implementation details of the used 

APIs, frameworks, and libraries. If you change e.g. an implementation of an 

API, then the reactions regarding memory and CPU usage are usually not 

predictable.

Hence, elaborate performance tests that simulate the expected real-life CPU 

and memory load are necessary.

Preparing decisions on software architecture, which are based upon several 

design or implementation alternatives can be time consuming and therefore 

expensive.

Hence, the results and their decisions should be stored for reference and reuse 

in future software projects.

24



25



Summarizing, it is currently not clear whether energy savings through 

information and communication technology outbalances its energy 

consumption or not. 

In either case it is rational to integrate sustainability aspects into software 

product design and development as it is already common today for material 

products, like cars, light bulbs or computer hardware.

Hence, we presented

a life cycle thinking inspired life cycle model for software products,

a generic process model for Sustainable Software Engineering that can be 

tailored to fit arbitrary software development process models

An example that shows how our generic process model can be tailored to a 

non-waterfall-like but agile software process

26



Our next steps are to detail and broaden our model with e.g.

More criteria for different software scenarios and types of software

Criteria that addresses the social and economic dimensions of sustainability

Examples and educational material that address indirect effects of software 

use, because we do not expect software developers to recognize these 

intuitively.

We plan to examine, how Process Assessment works in detail, we plan to 

tailor an evaluate our enhancements in real life software projects, and we plan 

to develop and operate the already mentioned knowledge base that supports 

development, administration, and use of software in a more sustainable way.

27



The project “Green Software Engineering” (GREENSOFT) is sponsored by 

the German Federal Ministry of Education and Research under reference 

17N1209.

The contents of this document are the sole responsibility of the authors and 

can under no circumstances be regarded as reflecting the position of the 

German Federal Ministry of Education and Research.

28


