
Markus Dick, Eva Kern, Jakob Drangmeister, Stefan Naumann, Timo

Johann

{m.dick, e.kern, -/-, s.naumann, t.johann}(at)umwelt-campus.de

Trier University of Applied Sciences, Umwelt-Campus Birkenfeld

Campusallee, D-55768 Hoppstädten-Weiersbach, Germany

http://www.green-software-engineering.de/

This presentation corresponds to the following paper:

Dick, Markus; Kern, Eva; Drangmeister, Jakob; Naumann, Stefan; Johann,

Timo: Measurement and Rating of Software Induced Energy

Consumption of Desktop PCs and Servers. In: Pillmann, Werner; Schade,

Sven; Smits, Paul (eds.): Innovations in Sharing Environmental Observation

and Information. Proceedings of the 25th EnviroInfo Conference

“Environmental Informatics” October 5-7, 2011, Ispra, Italy. Part 1, 2011,

pp. 290 - 299.

The project “Green Software Engineering” (GREENSOFT) is sponsored by

the German Federal Ministry of Education and Research under reference

17N1209. The contents of this document are the sole responsibility of the

authors and can under no circumstances be regarded as reflecting the

position of the German Federal Ministry of Education and Research.

1

The power consumption of data centres in the world increased from 58 TW

h in 2000 to 123 TW h in 2005[1], and is still increasing.

Hence, reducing the consumption of energy and natural resources caused by

ICT is necessary.

Where manifold efforts exist in the field of computer hardware (that is:

Green IT), there is a lack of efforts in the field of computer software.

Therefore, methods are necessary that enable different stakeholders like

developers, purchasers, administrators or even users to consider energy

consumption induced by software in their decisions on software products.

[1] Koomey, J.G., 2007. Estimating total Power Consumption by Servers in

the U.S. and the World. Final report, February 15, 2007. [Online] Analytics

Press: Oakland.

Available: https://files.me.com/jgkoomey/98ygy0 [Accessed: 13 Oct. 2011].

2

3

For our measurement method, there are several areas of application:

Basically, it is intended to support software developers during software

development but also administrators and users when configuring software or

when deciding on software that they currently use or operate or plan to use

or operate in the future.

We applied the method to compare the mean energy consumption of

•two configurations of a Web Content Management System (Web CMS) and

•two competing web browsers

These two measurements are later on shown as examples (as a kind of proof

of concept) how the measurement method is applied to desktop PCs and

servers.

The basic requirements are:

•It should be independent of source code availability, because administrators

and users usually do not have the source code in order to inject special

measurement code

•It should use customizable workloads so that it can be principally applied

to any kind of software

•It should use statistically reproducible workloads so that workloads of

different measurement experiments (the samples) are comparable

•Finally, it should provide statistically significant evidence on mean energy

consumption of two compared software products

4

5

Basically, software has no energy consumption. Instead, we are measuring

the energy consumption of a specific combination of hardware components

that execute software components (e.g. operating system, runtime

environment, application program). This is the so called “System Under

Test” (abbr. SUT).

This SUT is connected to a power or energy meter (abbr. PM), which

measures the consumed energy.

The Workload Generator (abbr. WG) applies the statistically reproducible

workload to the SUT. It can be either directly executed on the SUT (e.g. in

the case of measuring desktop software), but it can be also executed on a

separate computer (e.g. in the case of measuring server software).

The so called “Data Aggregator and Evaluator” (abbr. DAE) collects the

different readings from the SUT (CPU performance data), PM

(power/energy readings), and the WG (workload statistics).

After aggregating the data, it generates the so called “Significant Report”.

This report states, which of two compared systems consumes less energy

and is therefore for more energy efficient.

6

We did not invent the workload model by our own. Instead, we adapted the

workload model from ISO 14756, which describes a measurement and

rating method for computer systems performance.

The basic idea of the model is that users execute several task chains (one

could also call them workflows), which consist of several tasks, which

themselves are defined by a specific activity performed by the user and the

preparation time (one could also call it “think-time”).

Due to the fact that we need to emulate users of different kinds, the

workload model defines user types. For each user type, one can define

different task preparation time propabilities. These preparation times are

defined by mean and standard deviation. Each user type can also execute

several task chains. For each user type, the relative frequency of task chain

types is defined.

A complete workload definition also includes the number of users and their

type, which should be emulated by the WG.

7

The evaluation process is performed in three steps:

1. Aggregation: DAE collects necessary readings from SUT, PM, WG

2. Validation: Answers the question if generated workloads comply with

parameters predefined in the workload definition

 This means: Checking that the relative chain frequencies

are for each user type within acceptable tolerance

 Checking that the task preparation times

(mean, standard deviation) are for each user type within acceptable

tolerance

 The acceptable tolerance values need to be defined for each

workload set.

3. Evaluation: If the validation has not failed, the mean energy consumption

of two SUTs is evaluated with a statistical significance test.

 For this purpose we apply a standard t-Test for unpaired

samples. Due to the fact, that we did not know in the beginning whether or

not the samples will be normal, we applied 30 measurement experiments to

get 30 samples of mean energy consumption for each SUT. According to the

central limit theorem, we can assume that the samples are approximately

normal distributed.

Of course, conducting 30 measurement experiments is not practical for daily

use, e.g. in continuous integration scenarios of agile software development

projects, because this takes a long time. Hence, for daily use, one may use

less measurements.

8

9

10

The picture on the left hand side shows the structure of our example

website. The numbers denote the order in which the user visits the different

web pages.

The workload has only one user type and only one task chain.

In the task chain, four web pages are accessed several times: the Directives

page 2 times, the Climate Change page 2 times, the Renewable Energy page

4 times, and one of the legal documents two times.

The picture on the right hand side shows corresponding Apache JMeter test

plan.

The workload starts 67 threads, which represent a user single user.

This number was determined by experiment: with more threads the

validation failed due to loss of accuracy in preparation times.

11

Projection to one year of 24/7 operation:

savings 153,9 kWh/a = 30,78€/a (0.20€/kWh)

12

Mozilla Firefox 4.0.1

Microsoft Internet Explorer 9.0.8112.16421IC

MouseRobot is a desktop automation tool. Unfortunately, it has no support

for random preparation times, so we decided to use constant preparation

times.

Windows is a registered trademark of Microsoft Corporation in the United

States and other countries.

This is an independent publication)and is not affiliated with, nor has it been

authorized, sponsored, or otherwise approved by Microsoft Corporation.

13

14

When conducting measurement experiments, there may occur several

problems:

The measurement can be biased by

the WG, if it is directly executed on the SUT, e.g. for desktop software

the performance monitor that logs CPU performance readings

Hence, we propose to use a low impact WG and to monitor only

performance counters that are necessary (e.g. CPU Total, WG, Application,

Idle)

For the browser tests, we used real websites. This can lead to invalid

measurement results, if the content on the websites changes unexpectedly

(e.g. if advertising images are replaced by videos or new images)

Hence, we propose to use local partial copies or artificial websites whenever

possible.

15

16

With our measurement method, we showed that there is a difference in

mean energy consumption of different standard software products and even

in slightly different configurations of software.

17

18

The project “Green Software Engineering” (GREENSOFT) is sponsored by

the German Federal Ministry of Education and Research under reference

17N1209.

The contents of this document are the sole responsibility of the authors and

can under no circumstances be regarded as reflecting the position of the

German Federal Ministry of Education and Research.

19

Statistics output was generated with IBM SPSS Statistics 19

•Levene (< 0,01)  Equal variances not assumed

•t-Test (< 0,01)  H0 rejected  Means are not equal

20

Statistics output was generated with IBM SPSS Statistics 19

Web Browsers on Google Maps

•Levene (< 0,01)  Equal variances not assumed

•t-Test (< 0,01)  H0 rejected  Means are not equal

Web Browsers on Wikipedia

•Levene (> 0,01)  Equal variances assumed

•t-Test (< 0,01)  H0 rejected  Means are not equal

21

An example of a “Significance Report” generated with our prototypical

DAE software “S3C Power Analyzer“

22

