

Herzlich Willkommen am Umwelt-Campus Birkenfeld

zur Fachtagung

"Green IT in der Praxis"

Donnerstag, 19. April 2012

Programm

Programm

- 10:00 Eröffnung und Einführung
 - Grußworte
 - Green IT und Nachhaltige Software Einblicke & Ausblicke
- 11:00 Green IT Praxisbeispiele
 - Das umweltfreundliche Rechenzentrum Konzepte & Kriterien
 - Praxisbeispiele aus dem Hochschul- und Verwaltungsbereich
- anschließend Mittagspause

Programm

13:00 Green IT Perspektiven

- Energieeffizienz als Gebot der Stunde Nachhaltigkeit in der Beschaffung und durch die Anwendung von IT-Systemen
- Green IT aus Sicht der Unternehmensführung Ausgewählte Perspektiven und Handlungsfelder
- Vom Eigenanwender zum "grünen" FI-Institut Praxisbeispiel

anschließend Diskussion und Ausklang

 Zum Abschluss wird allen Teilnehmenden die Gelegenheit zur Besichtigung des Rechenzentrums am Umwelt-Campus gegeben.

Partner der Veranstaltung

Handwerkskammer Koblenz

US-Militärhospital 1956

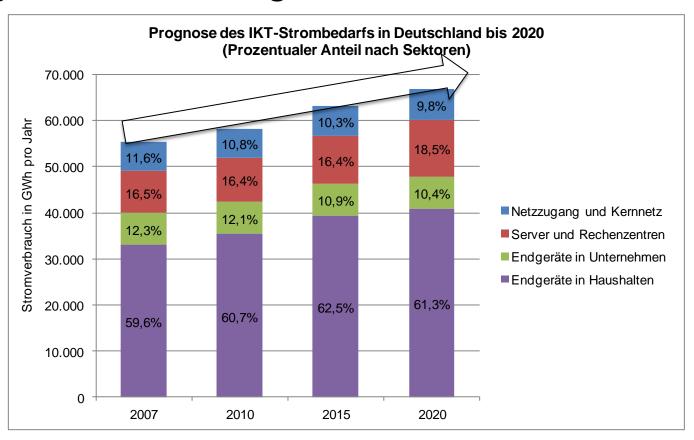
Umwelt-CampusDezember 2009

Fachtagung "Green IT in der Praxis" am Umwelt-Campus Birkenfeld

Green IT und Nachhaltige Software - Einblicke und Ausblicke

Prof. Dr. Stefan Naumann

Markus Dick, Dipl.-Inform. (FH), M.A.


Kurzfilmwettbewerb "GreenITube" (IZT)

1. Preis: Max Möller (18), "Sense of Vision", 2:44
 http://www.youtube.com/watch?v=4FOg8iZc2g0&feature
 =player_embedded

Agenda

- Prognose des Energieverbrauchs der IKT
- Green IT vs. Green BY IT
- Grüne Software und nachhaltige Softwaretechnik
- Perspektiven

Prognose des Energieverbrauchs der IKT

Datenquelle: Fraunhofer IZM; Fraunhofer ISI (2009): Abschätzung des Energiebedarfs der weiteren Entwicklung der Informationsgesellschaft, S. 115

Green IT und Green BY IT

Green IT vs. Green BY IT

Green IT

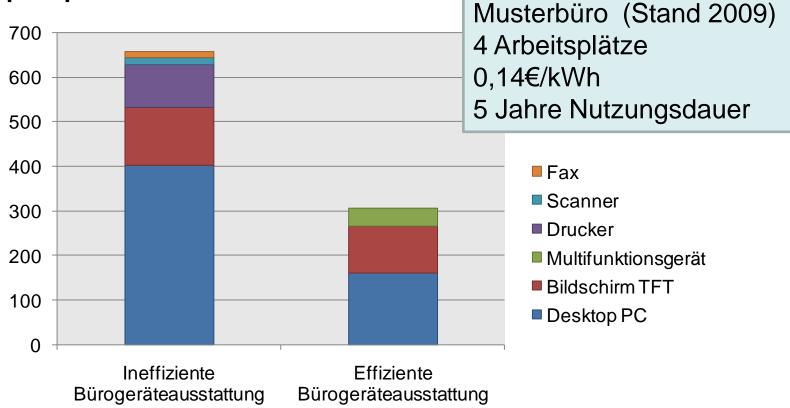
- Umweltschonende Bereitstellung von IKT
- Arbeitsplätze
- Server und Rechenzentren
- Kommunikations-Infrastruktur

Green BY IT

- Effekte auf andere Produkte & Dienstleistungen
 - Dematerialisierung
 - Smart Grid / Smart Metering
 - Smart Buildings
 - Smart Automotive
 - Smart Logistics
 - •

Green IT

- Umweltschonende Bereitstellung von IKT
- Arbeitsplatz
 - PCs, Bildschirme, Notebooks, Drucker
 - Vermeidung von Standby- und Schein-Aus-Verlusten
- Server und Infrastruktur
 - Klimatisierung
 - Server-Virtualisierung
 - Unterbrechungsfreie Stromversorgung


Erste Schritte

- Sensibilisierung der Anwender
 - Energiesparoptionen einstellen Computer, Monitor, Drucker
 - Energiesparoptionen verwenden
 z. B. Ruhezustand beim Verlassen des Arbeitsplatzes
 - Druckeinstellungen (Toner-Sparmodus, Duplex, 2 auf 1)
 - Medienbrüche vermeiden
 - E-Mails, PDFs etc. nicht ausdrucken
 - Daten nicht auf CD brennen
- Steckerleisten mit erreichbarem Schalter verwenden

Weitere Potenziale

- Serverräume
 - Optimierung der Klimatechnik (Wirkungsgrad)
 - Server-Virtualisierung
 - Server-Based-Computing
 - Unterbrechungsfreie Stromversorgung (Wirkungsgrad)
- Arbeitsstationen
 - Thin Clients (bei Server-Based-Computing)
 - Mini-PCs

Einsparpotenziale

Datenquelle: Deutsche Energie-Agentur (2009): Beschaffungsleitfaden. Energieeffiziente Bürogeräte professionell beschaffen. Beschaffungskriterien, Vergaberecht, Wirtschaftlichkeit, S. 8

Beschaffung von IKT

- Nutzungszeit verlängern
- Bedarfsgerechte Geräte kaufen
- Energieeffizienzkriterien berücksichtigen
- Geräte mit Energiemanagement bevorzugen
- Problematische und gefährliche Stoffe ausschließen
- Umweltzeichen berücksichtigen (ggf. deren Kriterien)

Green BY IT

- Effekte auf andere Produkte und Dienstleistungen
 - Dematerialisierung
 Videokonferenzen, Telearbeit, E-Books, E-Paper, E-Invoice, ...
 - Smart Logistics Logistikapplikationen
 - Smart Automotive
 Verkehrsflusssteuerung, Fahrzeugnavigation, Fahrverhalten
 - Smart Grid / Smart Metering
 Virtuelle Kraftwerke, Intelligente Stromnetze/Stromzähler
 - Smart Buildings
 Gebäude-Klimamanagement, Lichtsteuerung, Automation

Grüne Software/Grüne Softwaretechnik

"Software is getting slower more rapidly than hardware becomes faster."

Niklaus Wirth, "A Plea for Lean Software", Computer 28, 1995

Hardware became more powerful, but does your word processor run faster?

Do you need results of a search query while you are still typing it?

Comparison of Microsoft Windows minimum hardware requirements (for x86 versions).

Windows version	Processor	Memory	Hard disk
Windows 95 ^[4]	25 MHz	4 MB	~50 MB
Windows 98 ^[5]	66 MHz	16 MB	~200 MB
Windows 2000 ^[6]	133 MHz	32 MB	650 MB
Windows XP ^[7] (2001)	233 MHz	64 MB	1.5 GB
Windows Vista ^[8] (2007)	800 MHz	512 MB	15 GB
Windows 7 ^[9] (2009)	1 GHz	1 GB	16 GB

© 2012 Software Improvement Group

http://ext.delaat.net/news/2012-03-23/slides visser.pdf

Lebenszyklus von Softwareprodukten

Entwicklung

Nutzung

End of Life

Nachhaltigkeitskriterien für Softwareprodukte

Allgemeine Qualitätskriterien und -metriken Unmittelbare Kriterien und Metriken Mittelbare Kriterien und Metriken

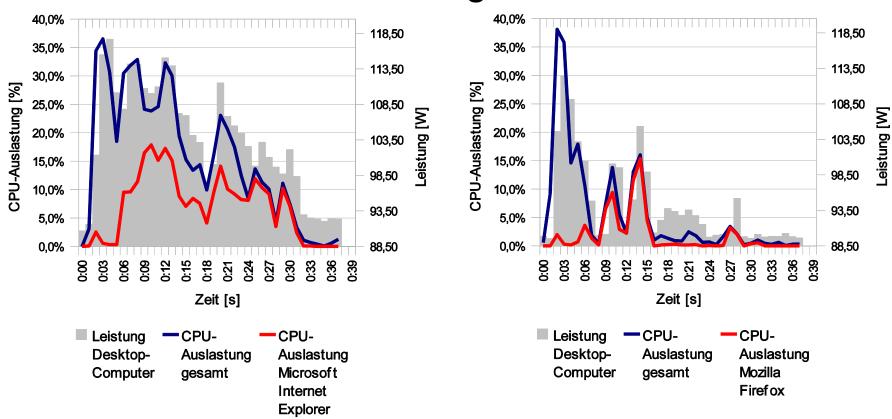
Vorgehensmodell "Green Software Engineering"

Entwickeln

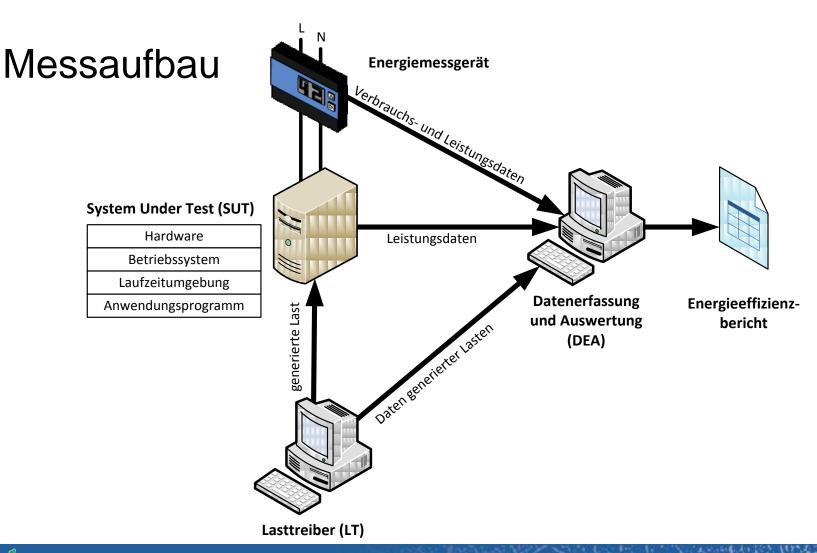
Beschaffen

Administrieren

Anwenden


Handlungsempfehlungen und Werkzeuge

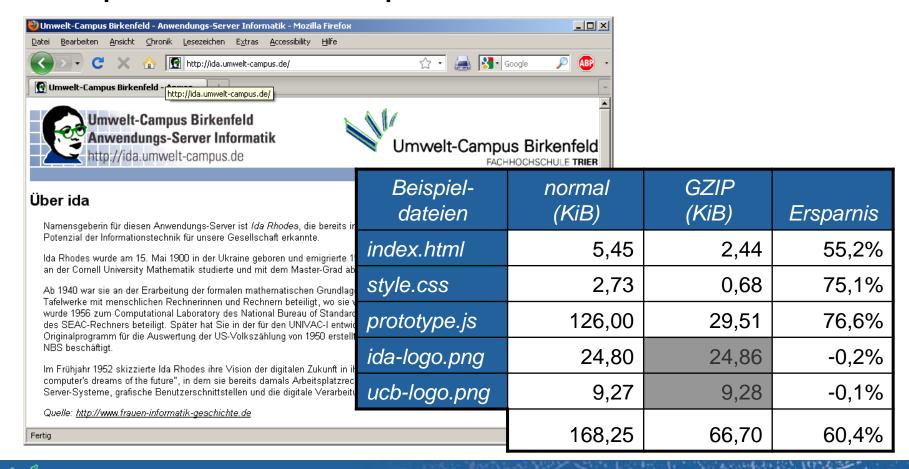
Für Entwickler


Für Beschaffer

Für Administratoren Für Anwender

Softwareinduzierter Energieverbrauch

Darstellung gleicher Wikipedia-Inhalte mit verschiedenen Browsern


Beispiel: HTML-Fragment-Cache mit Joomla!

N = 30	Stromverbrauch		Rechnerauslastung	
	Mittelwert	Std. Abw.	Mittelwert	Std. Abw.
Ohne Cache	33,94 Wh	0,163 Wh	50,7%	25,5%
Mit Cache	31,01 Wh	0,096 Wh	31,8%	16,8%

- ✓ Unterschiede im Mittelwert sind statistisch signifikant
- Ca. 4.000 Seitenaufrufe in 10 min. (576.000/Tag)
- HTML-Fragment-Cache bringt Energieersparnis von ca. 8,6%

WCMS Joomla! 1.5.23, Apache httpd 2.2.14, PHP 5.3.2, MySQL 5.1, Ubuntu GNU/Linux SMP 10.04 LTS, Kernel 2.6.32-32-generic-pae @ Supermicro P4BP8-G2, 2 x 2,4 GHz Intel Xeon Dual Core, 2 GiB RAM, ca. 60 GB HDD

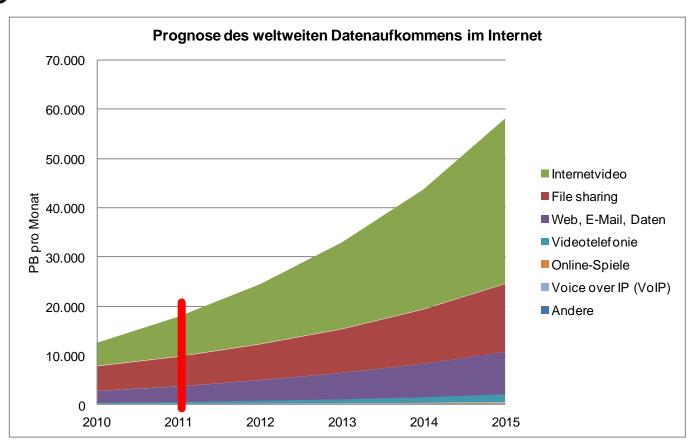
Beispiel: HTTP Kompression

Beispiel: Grafiken und Bilder optimieren

Software Development Platform
Umwelt-Campus Birkenfeld

Software Development Platform
Umwelt-Campus Birkenfeld

	Dateigröße (KiB)	Ersparnis
RGB	16,63	
RGB o.T.	5,79	65%
Palette 9	0,91	95%
Palette 4	0,59	96%

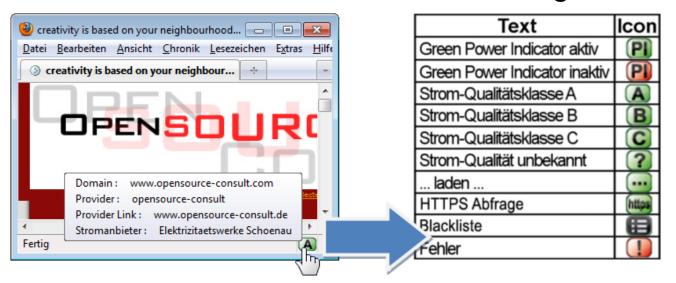


JPEG	Dateigr		
Qualität	normal	weichgz.	Ersparnis
100%	123,26	71,15	42%
80%	33,73	17,72	47%
Ersparnis	72%	75%	86%

Empfehlungen für WCMS, Web-Apps, ...

- HTTP Caching im Browser unterstützen (ETag/Expires)
- HTML-Fragment-Caches implementieren
- HTTP Compression unterstützen
- Bilder/Grafiken optimieren
- CSS/JavaScript-Dateien verkleinern

Prognose des Datenaufkommens im Internet



Datenquelle: Cisco Systems (2011): Cisco Visual Networking Index: Forecast and Methodology, 2010–2015. White Paper, San Jose, S. 9

Softwarewerkzeuge

Green Power Indicator (Firefox-Add-on)
 zeigt an, ob aufgerufene Webseiten über
 mit Ökostrom betriebene Server bereitgestellt werden

https://addons.mozilla.org/de/firefox/addon/green-power-indicator-gpi/

Green IT-Perspektiven

Das Rechenzentrum im Smart Grid

www.green-pad.de

Perspektive der IKT-Produktion

- Green IT und ihre Konzepte als Standard in IKT-Entwicklung, Beschaffung, Nutzung
- Green IT als Standard-Anforderung von Kundenseite
- Mehr Werkzeuge, mehr Methoden und mehr IDE-Integration
- Nutzungszeit von Software und Hardware verlängern: Effizienz, Effektivität und Suffizienz

Schnittstellen schaffen – der Virtualisierungs-Stack

- Ausnutzung von virtuellen Maschinen für jede kleine Website eine Betriebssystem-Vollinstallation?
- Mehrere virtuelle Server auf einem physischen
- Lastabhängige Steuerung zwischen den virtuellen und physischen Servern in einem Rechenzentrum
- Rechenzentrum übergreifender Lastausgleich
- Stromabnahme der Verfügbarkeit anpassen
- Schnittstellen werden benötigt für Interaktion von:
 - Betriebssystemen und Applikationen
 - Virtualisierungslösungen und RZ-Steuerung
 - Stromproduzenten und Rechenzentren

Green IT als Standard der Informatik-Ausbildung

Grafik: Marcel Schneider

"Öko-Test" auch für Software

Statt Chicken-Nuggets mal Textverarbeitungen testen?

Rebound im Auge behalten!

- Multimedia
- Bildschirme und Anzeigegeräte
- Cloud bedeutet mehr Transport
- Mobile Endgeräte
- (Smart Meter)

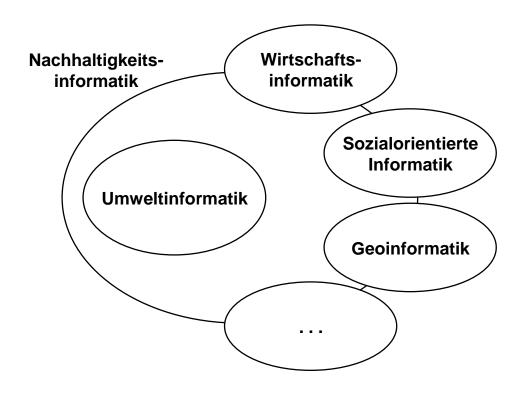
http://2.bp.blogspohttp://2.bp.blogspot.com/_PW5m7h_nE4A/Swp9Xv3zEhl/AAAAAAAAAAAAA/IcR_xnur5ZE/s1600/multimedia_grafik.jpg

Green by IT / Green through IT stärker im Blick

Bei der Planung von Maßnahmen zur Energie- und Ressourceneffizienz generell die IKT-Potenziale einbeziehen

Energieeffizienz ist nicht alles!

- Reparatur- und Aufrüstungsmöglichkeiten
- Nachhaltige Entsorgung der ITK-Geräte sicherstellen
- Einhaltung der Menschen- und Arbeitsrechte über die gesamte Lieferkette


Bildquellen: 2 v.l. Widmer et al. (2005): Global perspectives on e-waste. Environmental and Social Impacts of Electronic Waste Recycling. In: Environmental Impact Assessment Review, Jg. 25, H. 5, S. 436–458. 3 v.r. Prakash & Manhart (2010): Socio-economic assessment and feasibility study on sustainable e-waste management in Ghana. Hrsg.: Öko-Institut e. V. Freiburg.

Soziale Beschaffung

- Einhaltung ILO (International Labour Organization)
 Kernarbeitsnormen
 - Vereinigungsfreiheit
 - Recht auf Kollektivverhandlungen
 - Keine Zwangsarbeit, Kinderarbeit, Diskriminierung
 - Existenzsichernde Löhne
 - Sichere und gesunde Arbeitsbedingungen
 - Arbeitszeit maximal 48 + 12 Stunden pro Woche
 - Recht auf Aushändigung eines Arbeitsvertrags
- Überprüfung über die gesamte Lieferkette schwierig
- EU-Recht: Auftragsausführungsbestimmungen

Ziel: Nachhaltigkeitsinformatik

- Nachhaltige Informatik
- Informatik für Nachhaltigkeit
- Berücksichtigung von
 - Bereitstellungseffekten
 - Nutzungseffekten
 - Systemische Effekten

Möller/Bornemann 2005, Naumann 2006

Danke für Ihre Aufmerksamkeit!

GEFÖRDERT VOM


Förderkennzeichen 17N1209

greensoft@umwelt-campus.de http://www.green-software-engineering.de/

Green Software Engineering

Personen

Stefan Naumann

Eva Kern B.Sc.

> Markus Dick Dipl.-Inform. (FH), M.A.

greensoft@umwelt-campus.de www.green-software-engineering.de

Timo Johann B.Sc.

Leitfäden und Informationsmaterial

- Umweltbundesamt (2009): Computer, Internet und Co Geld sparen und Klima schützen (Verbrauchertipps). http://www.umweltdaten.de/publikationen/fpdf-l/3725.pdf [2011-01-31]
- Umweltbundesamt (2008): Umweltfreundliche Beschaffung. Ökologische & wirtschaftliche Potenziale rechtlich zulässig nutzen. http://www.umweltdaten.de/publikationen/fpdf-l/3687.pdf [2010-03-16]
- dena Deutsche Energie-Agentur GmbH (2009): Beschaffungsleitfaden. Energieeffziente Bürogeräte professionell beschaffen. Beschaffungskriterien, Vergaberecht, Wirtschaftlichkeit. http://www.dena.de/fileadmin/user_upload/Download/Dokumente/Publikationen/Strom/IEE/09100 1_Beschaffungsleitfaden.pdf [2010-11-16]
- BITKOM (2008): Empfehlungen für die umweltfreundliche Beschaffung von Desktop-PCs. http://www.umweltdaten.de/publikationen/fpdf-l/3711.pdf [2010-03-16]
- BITKOM: Thin Client & Server Based Computing.
 http://www.bitkom.org/files/documents/ThinClient_web.pdf [2010-04-01]
- WEED (2009): Buy IT fair. Leitfaden zur Beschaffung von Computern nach sozialen und ökologischen Kriterien. http://www2.weed-online.org/uploads/leitfaden.pdf [2011-03-17]