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Abstract
The use of Artificial Intelligence, and especially Machine Learning methods, promise to play key roles
in the development of Digital Twins due to their outstanding properties in processing large IoT data
streams. However, so far, there is a lack of research on the systematisation of Machine Learning-based
Digital Twins (MLDTs) as well as on their methodological development and implementation processes in
productive environments. The scientific literature describes various applications of MLDTs - even if they
are not called this way - and specialised methods and architectures, but a generic reference model is
still missing. Therefore, this paper proposes a systematisation of the characteristics of MLDTs and their
specific challenges. Furthermore, a first proposal of a process model for the systematic development of
MLTDs according to the Machine Learning Operations (MLOps) paradigm is presented as a tentative
instance of a future reference model for MLDTs. Thereby, we have incorporated established software
development methods as well as insights gained from the examination of several industrial applications
in the field of water resource management, of which we present one during the paper. We expect that
the process model allows practitioners to consistently develop and maintain MLDTs and researchers to
find potentials and research gaps.
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1. Introduction

Cyber-Physical Systems (CPS) and their seamless connection of control devices, physical assets,
and IT systems towards an Internet-of-Things (IoT) are current megatrends and promise im-
provements in efficiency and resilience in almost all domains [1]. Recently, the CPS paradigm
has also been rapidly expanded to include approaches to process planning, monitoring, and
control [2].

From their first mention at the beginning of the 21st century, Digital Twins have become
a cornerstone of CPSs, providing virtual representations of real physical objects, systems, or
processes. In doing so, they provide the nexus between the physical and digital world [3]. Based
on the data gathered from IoT devices and systems, they can perform complex simulations
and data-driven decisions to optimise the control of the physical CPS layer [4]. Meanwhile,
Artificial Intelligence (AI) has become a central enabler in the further development of Digital
Twins, both in research and in industrial applications [5]. Groshev et al. [5] see AI as the central
puzzle piece in the Digital Twin architecture to tackle common challenges within the concept
such as the effective usage of real-time data streams, the fulfilment of safety or performance
requirements, and optimal network usage. Grieves [3], who was instrumental in establishing
the concept of the Digital Twins, sees “Intelligent Digital Twins” built on AI technologies as
the next evolution of the Digital Twin paradigm [6]. On closer examination, the main focus
is often placed on the use of Machine Learning (ML) methods and its significant advantages
in processing large IoT data using statistical models [7]. Despite all the advantages of using
ML in the environment of Digital Twins, it also leads to specific questions and challenges, for
example regarding an effective Digital Twin ML model management [8], that have only been
addressed in a few scientific publications so far. For instance, there is a lack of characterisation
and established methods to support an effective and qualitative implementation of ML-based
Digital Twins and their productive operation. Therefore, in this paper, we aim to narrow down
and characteriseML-based Digital Twins (MLDTs) in CPSs, based on findings in related literature
and investigation of productive ML-based Digital Twin applications in the water industry.
This contributes to the clarification and definition of the concept of MLDTs and to a deeper
understanding of their properties. Based on best practice examples from a case study in the
domain of water resource management and established software implementation methods, a
first outline of a process model for the development and productive operation of MLDTs is
presented.

The outline of this paper is as follows: Sect. 2 describes the role of AI and ML in the context
of Digital Twins and provides a definition of MLDTs and their characteristics. The use of this
type of Digital Twins is demonstrated in Sect. 3 with a practical example showing the case study
of artificial neural networks (ANN) to control a water distribution network. As the main focus
of this paper, in Sect. 4, we develop a first approach for a process model for the implementation
and operation of MLDTs in the context of CPSs. This process model can be seen as a first
instance of a future reference model for MLDTs.



2. ML-Based Digital Twins and their challenges

As already stated in the introduction, technologies from the field of ML are increasingly applied
in the field of Digital Twins. Therefore, we first define the term ML-based Digital Twin, based
on an extensive literature review and our experiences from practical Digital Twin applications.
From this, we describe the most important components of an MLDT and identify its specific
challenges.

2.1. Related Work

There are many different methods for the realisation of Digital Twins, e. g. Geographical Infor-
mation System (GIS), Building Information Modelling (BIM), or Computer-Aided Design (CAD)
models [9] or the use of data-related technologies such as OPC UA1 or AutomationML2 in
manufacturing [10] and various frameworks for DTs have been presented (cf. [11, 12]). Digital
Twins, based on static models, differ fundamentally from those based on ML methods. Min
et al. [13] propose a framework for ML-based digital production control optimisation in the
petrochemical industry and demonstrate their solution with a case study. Furthermore, they
propose different chronological steps to develop an MLDT based on a mathematical simulation
model. According to their concept, the ML-based “Digital Twin Model” is created through model
training and validation based on prepared, historical training data. Ritto and Rochinha [14]
investigate the integration of physics-based models with ML to construct a Digital Twin to
identify structural damage to wind turbines in real time. By transforming the physical models
into an ML model, it is possible to benefit from its performance in processing a large amount of
IoT data.

The increasing importance of ML for Digital Twins leads to a need for practice-oriented
process models that control the development process of Digital Twins based on ML techniques.
With CRISP-DM and MLOps there are established procedure models from the Data Mining
and ML perspective. So far, only a few works address concrete procedures for Digital Twins
that focus especially on the ML aspect [15]. To the best of the authors’ knowledge, there are
no publications to date on a deeper systematisation of Digital Twins based on ML models in
the direction of a reference model (e. g. according to [16]), which guides focused research and
application development of MLDTs.

2.2. Definition and Characteristics of ML-Based Digital Twins

In the context of this paper, an ML-based Digital Twin is defined as a special type of Digital
Twin where ML models form the central basis for the twin’s ability to model and simulate the
physical world. These models are adapted to the specific requirements of the Digital Twin by
training with large amounts of data and can also recognise previously unknown patterns and
react to unknown incoming data in real time.

In comparison to other types of Digital Twins, MLDTs defined in this paper have some special
characteristics which are summarised in the following:

1https://opcfoundation.org/about/opc-technologies/opc-ua/
2https://www.automationml.org/

https://opcfoundation.org/about/opc-technologies/opc-ua/
https://www.automationml.org/


Task specialisation: On the one hand, Digital Twins based on ML methods can be applied in all
kinds of CPSs, regardless of the domain (manufacturing, smart grids, etc.) or the task (intelligent
control, conditionmonitoring, etc.). On the other hand, an individual MLDT is trained to perform
a very specific task. This means, for example, that a neural network, optimised for industrial
quality analysis [13], cannot be used simultaneously in the energy efficiency improvement of
buildings [15].
Physics-based model integration: Physics-based models in the context of Digital Twins are

computer-based models that mimic the physical properties and behaviours of real objects or
systems, for example, representing energetic or thermal and other physical properties in mathe-
matical form. MLDTs are able to benefit from the strengths of these models (interpretability,
generic applicability, etc.) on the one hand and from the performance of data-driven models
on the other hand through the targeted integration of physical models, e. g. to supplement or
generate training data [14].
Data-driven model building: Every Digital Twin needs models to represent the behaviour

of its real counterpart and to be able to make predictions or perform simulations based on
(IoT) data [10]. While, for example, BIM, GIS or CAD-based Digital Twins usually derive their
information from (3D) models of buildings, infrastructures, or other physical objects, MLDTs
are, at their core, based on ML models applied to real-time data or other sources [13], e. g. from
IoT-sensors in the field. This enables MLDTs to recognise previously unknown patterns or
correlations and to make higher-quality decisions based on real-world data.
Data complexity and processing: MLDTs are specialised in processing large amounts of

data from various sources in near real-time and can process them, for example, in cloud
environments [2] or on the edge [17], depending on the individual use case requirements for
performance and confidentiality. Furthermore, by integrating additional (domain) knowledge
in the different phases of the ML process, the robustness of the MLDT can be increased. Thus,
prior knowledge can not only support the selection of a suitable model or the interpretation of
model predictions, but also help in the data preparation phase to clean the data, fill in missing
values or remove outliers [18].

Adaptability and learning: Digital Twins operate in dynamic and permanently evolving
environments and must therefore be able to adapt changes as efficiently as possible. These
changes can be both sudden or gradual, as well as unconscious or planned (e. g., the planned
change of technical components versus their gradual wear and tear). The (real-time) processing
and analysis of large amounts of data, gives the MLDT the ability to adapt to changes in their
environment and provides a major advantage over other forms of Digital Twins [13].
Federation and transfer of learning outcomes: Digital Twins often process sensitive data

concerning intellectual property or personal data. By applying federated ML techniques in
the context of Digital Twins, distributed (cross-company) data sets can be used efficiently to
increase model performance and scale, while preserving data privacy. In addition, MLDTs can
use transfer learning to access pre-trained models and apply them to similar problems [19].

Fig. 1 shows the rough structure of an MLDT with the associated ML pipeline. The exact
structure of an individual MLDT depends on various criteria, such as whether it is operated
locally or in the cloud, or whether a federated learning approach is used. The ML pipeline
generates an ML model, for example a trained neural network, and loads it into a model
repository on the Inference Environment, which applies the trained model to new, incoming
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Figure 1: Structure of an MLDT with related ML pipeline

(IoT) data from the physical layer. The model training infrastructure and the MLDT inference
infrastructure are often separated from each other so that they can each be optimised for their
respective tasks [13]. As described previously, the training phase of the MLDT often integrates
both historical (IoT) sensor data and information from other Digital Twin domain models, e. g.
using feature engineering steps or generating additional training data.

Within the inference environment, the trained model is managed and applied by the inference
engine to real-time data from the physical layer. To do so, the Datastream Manager prepares
the incoming data for the Inference Engine, for example by cleaning or normalising it. This
enables the MLDT to offer its service and to perform control, simulation or monitoring tasks. To
assure prediction performance of the MLDT measured by specific ML performance indicators,
(automated) triggers can initiate a retraining of the models if threshold values are exceeded or
not reached, for example in case of quality issues.

2.3. Challenges in the implementation of ML-based Digital Twins

The development of an MLDT in a CPS is a highly complex, interdisciplinary process that
requires both a profound understanding of the subject domain and its underlying technical
processes, as well as in-depth knowledge of data analytics and ML, software development, and
project management.

Thereby, the performance of the Digital Twin application depends significantly on the choice
of a well-fitting and robust ML model. On the one hand, a sufficient amount of high-quality
data is essential for the training of ML models. This requires, in particular, the preparation
of the data, including the cleaning, transformation, and integration of different data sets from
different sources. This step often also requires the conversion of specific knowledge models,
for example based on CAD, BIM, or GIS information, into a format adequate for the learning
process, for example through synthetic data generation in domain systems [14]. On the other
hand, Digital Twins operate in dynamic and permanently evolving environments and therefore
must be able to adapt to changes as efficiently as possible. In all cases, the ML pipeline must be
created robust enough to adapt (autonomously) to changing environmental conditions or to



allow the retraining of their models in a structured way during live operation [13]. The overall
challenge is to develop a robust and powerful MLDT that can evolve and learn throughout its
entire lifetime (cf. continual lifelong learning) [20].

Another challenge, in regard to especially high compute- and data-intensive components
of MLDTs (like the training processes, model federation, etc.) is their resource- and energy
efficiency and thus, their impact on the environment. While it is true that, as stated in the
introduction, the efficiency in the underlying domain-specific processes can be improved through
the optimisation with MLDTs (Green by IT) [21, 22], it is important that the systems themselves
are built in a way that they adhere to sustainability specifications and do not become resource
drivers [23, 24]. This is even more significant when we consider that the IoT systems that form
the basis of the MLDTs in the physical world are usually lightweight and distributed in the
field [25]. Thus, it is important to ensure that the hardware resources are available and that the
energy supply is sufficient (batteries, solar cells, energy harvesting, etc.).

3. Case Study: ML-Based Digital Twins in Water Resource
Management

AI and the DT paradigm also find application in the Water Resource Management (WRM)
domain. As a result of a thorough literature search, the authors were able to identify four
categories in WRM into which previous publications can be classified. While being prevalent in
WRM, these categories certainly are not WRM-specific and can also be applied to other domains.

For one, MLDTs in WRM are used in the context of Forecasting to predict the behaviour
of the water cycle through the timeline. Typically needed forecasts in WRM include the
required extraction from water sources [26] or water demand patterns [27]. Another category
is Monitoring & Maintenance considering that various papers show that the seamless operation
of water utilities can be supported by MLDTs (e. g. [28, 29]). The next predominant category
is Optimisation & Controlling, as for example, energy efficiency through optimal pump and
valve operation is also a significant topic in WRM [28] and ML algorithms are a perfect fit
for these optimisation problems. Lastly, Digital Twins are used for Decision Support, e. g. for
infrastructure planning [28] or employee training [30]. In most use cases, the Digital Twins are
a holistic representation of the water utility, so usually they can fit into more than one category
as they serve multiple purposes.

The case study in this paper is about the MLDT for a drinking water network in southwestern
Germany and can be assigned to the Forecasting and Optimisation & Controlling categories,
while also partially fitting into the others.

ANN-control of Drinking Water Distribution Systems

The “Stadtwerke Trier” (SWT), a municipal utility, operates a drinking water network which
has a capacity of 10 to 11 million cubic meters of water, serving a population of approximately
110,000 residents in the city, located in southwestern Germany. The city’s drinking water net-
work is supplied by twowater utilities, one of which obtains its water from a reservoir at a higher
altitude and generates about 1 million kWh of energy annually via two turbines (2 x 250 kW)



integrated in the water inlet. In addition, four rooftop and one ground-mounted system provide
a cumulative photovoltaic (PV) capacity of approximately 500 kWp. Compared to the electricity
generation, the energy consumption of the grid is also considerable and ranges from 1.6 to
1.7 million kWh per year, especially due to several water pumps that are used for transferring
the water to different storage reservoirs and grid zones within the city due to the topographical
location.

In 2017, SWT started an automation project together with the industry supplier Xylem3,
whose objective was to create a Digital Twin for the online simulation and energy-efficient
optimisation of drinking water distribution based on ANNs. The overarching target parameters
of the Digital Twin are the provision of drinking water in the required quantity and water
pressure for the end users, while at the same time minimising energy consumption. Similar to
the division of the water distribution system (WDS) into separate water network zones, local
optimisation takes place in the Digital Twin at the level of these WDS zones, along with global
optimisation at the level of the overall network. The structure of the MLDT used in this case
study can be seen in Fig. 2.
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Figure 2: Optimised operation of the SWT WDS through an MLDT

To enable the local optimisation, two types of zone-specific models are required. On the one
hand, water demand prognosis requires forecasting models that have been trained on the basis
of historical consumption and weather data and represent the water demand of a WDS zone.
On the other hand, there is also the need for infrastructure models that replicate the hydraulic
and energetic behaviour of the physical components. Both energy consumers (pumps, valves,
etc.) and energy producers (turbines) are modelled. Such simulations are already available
3The ANN-based control of water distribution networks and water treatment plants is offered by
Xylem under the brand name BLU-X: https://www.xylem.com/de-de/products--services/digital-solutions/
blu-x-treatment-plant-optimization/

https://www.xylem.com/de-de/products--services/digital-solutions/blu-x-treatment-plant-optimization/
https://www.xylem.com/de-de/products--services/digital-solutions/blu-x-treatment-plant-optimization/


in the form of deterministic models which are provided by a domain-specialised software
for the simulation, calculation and analysis of utility networks.4 Although simulations of
individual WDS zones with these deterministic models on their own is possible, they are very
time and resource consuming and therefore not suitable in live operation. The modelling of
the physical WDS properties by ANNs ensures significant performance gains in the simulation
of optimised operation modes in live operation. Nevertheless, the data from simulation runs
of the deterministic infrastructure model combined with expert knowledge from the domain
are used as a valuable training input for the ANN. With these two types of trained models for
each WDS zone, an optimal control of the physical components is found for energy-optimised
operation in terms of power generation and consumption.

Based on the incoming real-time data, provided by the SCADA system or additional data
sources and considering different interactions between individual WDS zones, a global overall
optimisation of the WDS is carried out according to the principle of modular ANNs. As a result,
the optimised operational suggestions can be carried out by the WDS SCADA system to control
the physical layer (e. g. pumps, valves, etc.). By abstracting the WDS-based on the MLDT
presented here, the self-consumption of green energy can be increased from 60 to 90 % through
optimised operation.5

Since the MLDT is the virtual representation of a highly dynamic, physical network, it has
to be considered as a constantly evolving system. For example, an even deeper integration of
renewable energies into the described system is planned in the future by considering forecasts
of PV power generation. In order to be able to integrate new models like these into the existing
system and, if necessary, also update the existing models, it is helpful to have clearly defined
processes in which system adaptations and MLDT applications can run in parallel.

4. Process Model for the Development of ML-Based Digital
Twins

The development of Digital Twins, and in particular of MLDT applications, is a cross-
organisational, time- and knowledge-intensive process that requires a variety of different
skills and needs collaboration between domain experts (often supported by external technical
planning offices), automation engineers, component manufacturers, data scientists, and ML
engineers. In the following sections, we present a first approach for a six-phase process model
that structures the different work steps of MLDT development. To this purpose, we first describe
the methodology of the process model definition on the basis of established data science and
software development procedures as well as best practice examples.

4.1. Methodology

As mentioned earlier, the development of Digital Twins is a complex, labour-intensive process
that requires the collaboration of teams with different expertise, especially when essential
activities of the Digital Twin are carried out by ML.

4SWT uses STANET for WDS modelling and calculation: https://www.stafu.de/en/home.html [2023-04-30]
5https://www.swt.de/p/CO2_freies_Trinkwasser_f%25C3%25BCr_Trier-5-7330.html [2023-04-30]

https://www.stafu.de/en/home.html
https://www.swt.de/p/CO2_freies_Trinkwasser_f%25C3%25BCr_Trier-5-7330.html


ML applications are typically complex and require careful planning, development, and imple-
mentation to ensure they can be used safely and effectively in a production environment [31].
In practice, ML projects often fail because insights from the data exploration phases are not
effectively applied in productive ML models, which can lead to inaccurate predictions, higher
costs, and risks. To structure the procedure of effective development of reliable operational
ML applications, the Machine Learning Operations (MLOps) approach has emerged in recent
years. MLOps is a cross-functional, collaborative, and iterative paradigm that takes estab-
lished DevOps, e. g. by adopting the Continous Integration (CI) and Continous Delivery (CD)
paradigm, practices from software development and combines them with data engineering and
ML methods [32].

The development of an overarching process model is strongly oriented on selected scientific
publications on MLOps on the one hand and on expert interviews and studies of ML application
projects in water resource management on the other. With regard to a framework MLOps struc-
ture, the procedure model described in Sect. 4.2 is loosely oriented on the MLOps architecture
according to [32]. As a deeper look at the practice also shows that structured data-mining and
software development methods have already been adopted in industrial water management
applications, we base the detailed MLOps workflow definition for the data-mining and engi-
neering steps on CRISP-DM [33], the de-facto standard workflow for industrial data science
projects and established DevOps principles.

4.2. Six-Phase process model

Fig. 3 shows a six-phase process model for the development of MLDTs, developed according to
the methodology described above. Each phase is divided into a different number of tasks which
are ordered chronologically (indicated by the numbering in the round brackets).
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Phase 1: Digital Twin Alignment and ML Problem Definition

Usually, data science or ML projects start with a phase in which the problem is specified, and
a preliminary project plan is set up. In CRISP-DM, this initial step is very closely linked to
the phase of data understanding, since the problem definition is based on hypotheses about
possible data patterns [33]. Based on this, the first steps of the proposed process model include
the (1) definition of the business problem to be addressed by the Digital Twin and the definition
of an overall project plan that regulates the allocation of tasks between domain experts, data
scientists, ML engineers, or software developers. Subsequently, the raw data required for a
rough (2) exploratory data investigation are compiled and subjected to an initial (3) data quality
check. Based on these initial findings and the defined business goals associated with Digital
Twin development, the (4) ML problem (regression, classification, etc.) to be solved is defined at
the end of the first process model phase.

Phase 2: Data Preparation

IoT data is usually not flawless and its quality can vary greatly. Therefore, before training the
ML models, it is necessary to (5) remove faulty data or (e. g. synthetically) fill in missing data
and perform a final data quality check. The (6) feature transformation and engineering step
involves the preparation and processing of input features, including conversion of features into
a processable format and creation of new features or modification of existing features to improve
the performance of the model. Parallel to the feature engineering task, the (7) integration of
additional data takes place, for example also from external sources, which are necessary for the
execution of the Digital Twin service. This can include, for example, weather data for Digital
Twins in water treatment or energy market data for planning energy-optimised production
processes [30]. The outcome of the “Data Preparation” phase is a cleaned and integrated data
set that is aligned to the next phase for the training and evaluation of an ML model tailored to
the Digital Twin Service.

Phase 3: Model Training and Evaluation

During the third phase, the most suitable ML methodology with regard to the problem defined
in phase 1 is to be evaluated, and its learning result subsequently stored as a model. At the
beginning, an (8) exploratory data analysis (EDA) takes place, in which the surveyed data is
analysed with regard to the statistical correlations of their features. The choice of the EDA
environment, for example Matlab [34], R, or Python [35], depends on the project requirements,
the skills and knowledge of the data analysts and the specific domain. Since the previous
step is very closely related to (9) model training (different ML approaches require differently
prepared data), these activities can be carried out in parallel. ML models are the result of the
learning process and depend on the method and data used to train them. In the domain of
WRM, these are for example ANNs for process control tasks (cf. case study in sect. 3) or support
vector machines for predicting the water demand [36]. Different model parametrisations allow
(10) model validation based on selected performance metrics, for example the Mean Squared
Error (MSE) or the Mean Absolute Error (MAE) for the assessment of regression models for the
prediction of water demand or the expected wastewater quantity based on weather forecasts.



At the end of the Model Training Phase, the (11) most promising ML model is evaluated against
the Digital Twin requirements defined in phase 1 and a decision is made whether to initiate
the development of a productive MLDT environment (phase 4). Phase 3 identifies the best-fit
ML model through experimental training, but training on productive data is completed in later
steps.

Phase 4: ML-Based DT Development

The fourth phase covers all activities to build an infrastructure on which the MLDT can be
evaluated and ultimately operated with productive data. Normally, the infrastructure for CI/CD
is divided into at least two environments - with one being the testing or pre-production stage
and the other one being the productive environment. The aim of the development in this phase
is both an ML pipeline that regularly learns updated ML models initiated by various rules or
triggers and the inference environment that applies these models to real-time data (cf. Fig. 1).
Phase 4 starts with the (12) specification and setup of the system infrastructure, where, for
example, basic decisions are made about the structure of the server environments (cloud or
on-premise, server configuration etc.) and all necessary Application Programming Interfaces
(APIs) are defined. To automate the CI and CD of updated ML models and software components
of the MLDT, a corresponding (13) CI/CD pipeline must initially be established. After the
CI/CD pipeline has been initialised, step (14) involves the development of the previously defined
interfaces and software components as well as the development of the ML pipeline and the
inference server. Every newly developed component or functionality triggers the CI/CD pipeline
in the pre-production stage, which is further described in phase 5 as the development loop.
To monitor the performance of the MLDT in later live operation, various (15) triggers are set
up at the end of the implementation phase that initiate either an adjustment of the system
environment, the ML pipeline, or the retraining of the ML model (cf. phase 6).

Phase 5: CI/CD for ML-Based Digital Twin

In phase 4, a prototype of the MLDT was provided, but it is still not in live operation and does
not yet control the real asset. Before the Digital Twin becomes productive, its functionalities
have to be integrated, tested, and deployed on the final infrastructure. This is partly based
on the MLOps-approach proposed by Google6 for CI/CD in ML. During the execution of the
(16) CI pipeline, the software fragments are continuously checked for errors in order to be
able to detect and rectify problems at an early stage. Subsequently, in the (17) CD step, the
MLDT system, including the ML pipeline or the modified system components, are deployed
on the server. In the (18) continuous training step the ML model will be trained based on the
developed and previously deployed ML pipeline. After this step, the trained ML model is then
stored in the repository of the Inference Environment during the following (19) Model CD. As
mentioned in the previous phase, the proposed CI/CD pipeline (including steps 16, 17, 18, and
19) runs in a development loop as newly developed features are tested, integrated and deployed
in the pre-production environment. When all tests are passed and all MLDT requirements from

6https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
[2023-04-30]



phase 1 are met, in step (20) the CI/CD pipeline is executed on the productive environment.
This final productive CI/CD run concludes the development, as the ML model is now trained
on productive data and the MLDT is ready for operation on the productive environment. This
whole phase is not only carried out during the initial development of the MLDT, but also during
partial adjustments of the system, e. g. adjustments in the ML pipeline or the integration of
new data.

Phase 6: Live operation

After the CI/CD phase and the successful go-live, the performance of the Digital Twin is
(21) monitored during operation. The triggers implemented in phase 4 (step 15) can initiate
different workarounds: A type A trigger (cf. annotations in Fig. 3) provides the impulse that
the ML model needs to be retrained (step 18), for example in the case of decreasing prediction
quality, recognisable by the deterioration of various performance metrics. A type B trigger
indicates a different workflow and means that either changes to the software environment (e. g.
update, adaptation of API) or to the ML pipeline (integration of new features, hyperparameter
modification) must be done. Digital Twins are not static structures, but are often further
developed with regard to their business case after their initial implementation. Depending on
the intensity of the intervention, it may be necessary to specify these adjustments again starting
with phase 1 (cf. trigger C). This could be the extension of the Digital Twin, where entirely new
functionalities are to be integrated, e. g. the integration of PV power forecasts into an existing
ANN control of the water distribution network.

4.3. Discussion

In the context of the increasing importance of Digital Twins based on ML methods, the process
model described above is a first comprehensive attempt to take the specifics of MLDT into
account. This involves coordinating the preliminary steps of business goal definition and ML
problem formulation, as well as the learning of suitable ML models and the development of a
suitable inferencing environment and its operation. By integrating established data mining,
ML and software development paradigms with best practices from practical Digital Twin
implementation projects, the process model provides a structural framework for interdisciplinary
collaboration in MLDT projects. It fosters structured cross-organisational collaboration among
different experts with different skills. At the same time, the strict DevOps focus ensures fast
and secure development and deployment of the necessary software components, with particular
emphasis on regular updates of the fundamental ML models. This meets the high demands of
Digital Twins regarding their adaptability in changing environments.

5. Conclusion and Future Work

As evaluated in this paper, Digital Twins are enabled to process large amounts of data in real
time through the use of ML and can thus perform intelligent control and optimisation tasks.
This paper therefore proposed an initial characterisation of MLDTs and specifies the associated



challenges. To address these challenges, a six-phase process model for the development, deploy-
ment and operation of MLDTs was proposed that considers the aspects of Digital Twin problem
definition and evaluation of a suitable ML model as well as its productive implementation within
a CPS. The adoption of CI/CD practices ensures integrated monitoring of model performance
as well as (semi-) automated model retraining and updating.

Despite the widespread use of ML techniques in the context of Digital Twins, however, there
is a lack of comprehensive definitions and differentiations from other Digital Twin modeling
approaches. To further encourage research in Machine Learning-based Digital Twins, we
propose the development of a general reference model by combining deductive and inductive
elements. This should include a comparison of similar reference models from the field of CPSs
and findings from an extensive literature study as well as further investigations in industrial
MLDT applications, for example in the field of water management.
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