

Electric efficiency in drives

Energy consumption in air handling units reduction of electric power consumptions based on plugged fans

Dr.-Ing. Christoph Kaup c.kaup@umwelt-campus.de

Electric power consumption

- $P_m = V \bullet \Delta p \bullet 1 / \eta$
- P_m Electric power consumption [KW]
- V Air flow rate [m³/s]
- Δp Total pressure losses of the AHU [Pa]
- η Systemefficiency of the drive [./.]

 $\eta = \eta_{\mathsf{F}} \bullet \eta_{\mathsf{M}} \bullet \eta_{\mathsf{D}} \bullet \eta_{\mathsf{C}}$

Fan • Motor • Drive • Control

DIN EN 13779

European Committee for Standardizatior Comité Européen de Normalisation Europäisches Komitee für Normung

Ventilation of non-residential buildings – Performance requirements for ventilation and room-conditioning systems

Specific Fan Power (SFP)

 P_{sFP} Specific fan power [W/(m³/s)] P_{input} electric power consumption [W] q_v nominal air flow rate [m³/s] Δp_{fan} Total pressure of the fan [Pa] η_{total} systemefficiency of the drive [-]

Specific Fan Power

EN 13779 : 2007

class	PSFP	
	W/(m³/s)	
SFP 1	<u>≤</u> 500	
SFP 2	<u>≺</u> 750	
SFP 3	<u><</u> 1.250	
SFP 4	<u>≤</u> 2.000	
SFP 4 SFP 5	≤ 2.000 ≤ 3.000	
SFP 4 SFP 5 SFP 6	≤ 2.000≤ 3.000≤ 4.500	

Δp _{Fan} [Pa]		
η _{total} 0,55	η total 0,65	
275	325	
410	485	
685	810	
1.100	1.300	
1.650	1.950	
2.475	2.925	

Application	Default value	
ETA without HR	SFP 2	
ETA with HR	SFP 3	
SUP without HR	SFP 3	
SUP AC	SFP 4	

For special components (e. g. HEPA-filter, HR H1 or H2) add. SFP-Values shall be used.

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

Additional fan power

EN 13779 : 2007

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

	Component	add. P _{SFP} [W/(m ³ /s)]
1	add. filterstage	+ 300
2	HEPA filter	+ 1.000
3	Gasfilter	+ 300
4	HR class H2-H1	+ 300
5	High capacity cooler	+ 300

Drive optimization

Drive optimization

• Reduction of the drive power (plugged fans)

Control device with axial inlet flow

• Efficiency - Turbulence -

Drive optimization

- Plugged fan (direct driven)
- Continuous speed controlling device (FI)
- Energy-optimized motor EFF 1 (EI 2)
- Reduced inlet airflow losses
- Reduced outlet airflow losses

Motor

Principles

AC Three-phase motor Alternating current EC Electric commutaded Continuous motor PM Permanent Magnet motor

Motor

Efficiency (Example n = 1500 1/min)

Nominal power	EFF2	EFF1 (EI 2)
1,1 KW	77,0 %	84,0 %
2,2 KW	82,0 %	86,5 %
4,0 KW	85,0 %	88,5 %
7,5 KW	87,0 %	90,3 %
55,0 KW	93,5 %	95,1 %

Motorefficiency

System comparison

Drive optimization

- Single-step filtering possible
- Use of the fan as a mixing device
- Use of the cooler on pressure side (dry)
- Improves incident flow of the components
- No belt drive and abrasion

Filter technology

- Single stage filter technology
- First Stage F 7 (80 % at 1 µm)
- Better protection of the AHU
- Reduction of pressure losses
- Reduction of the AHU length

System comparison

Comparison F5 to F7 filters

99,9 % of the particles are smaller than 1 µm

Filterefficiency in % F5 / F7

F7 / F7 Filterstages

Efficiency in %

Filter technology

- Two-stage filtering F 7 F 7
- Quality corresponds to F 5 F 9
- Better protection of the AHU
- Reduction of final press. drop app. 200 Pa
- Reduction on the average 100 Pa
- To provide with stock only 1 medium

Control

Air flow rates

Speed control e.g. Frequency inverter

Throttel control e.g. dampers

Power and efficiency

Mechanical efficiency

Power and efficiency

Mechanical efficiency

Power and efficiency

System efficiency η_{Sys}

Power and efficiency

Example

Air flow measuring system

Function: Effect pressure to the flow rate

Air flow measuring system

- Measurement by eff. pressure (fan nozzle)
- Accuracy 5 %
- Wired on FI (readable on display)
- Flow rate automatic constant control PID
- Further parameters (N, n, U, I, etc.) at the FI
- Output 0...20 mA at the FI (1:1)

Exhaust fan with air mixture chamber

- Positioning exhaust air opposite room air
- Frequency-regulated over dP_{RA}

Exhaust fan with air mixture chamber

- Positioning in the exhaust air
- Speed adjusted over dP_{RA}
- Energy conservation 80 %
- Only with air mixture operation possible
- Only with balanced ext. pressures

Electric efficiency in drives

Energy consumption in air handling units reduction of electric power consumptions based on plugged fans

Dr.-Ing. Christoph Kaup c.kaup@umwelt-campus.de

