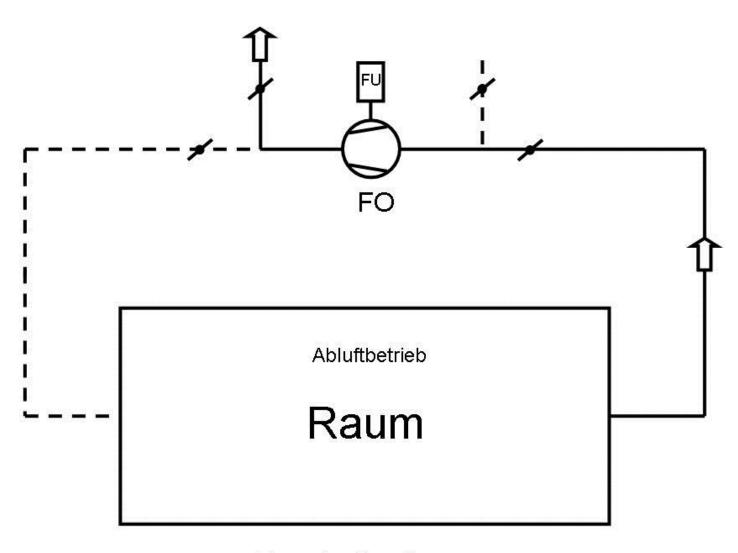
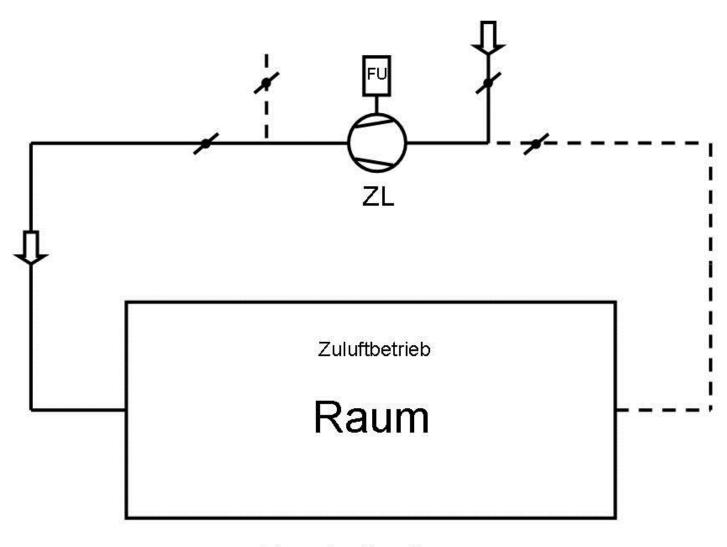

Willkommen

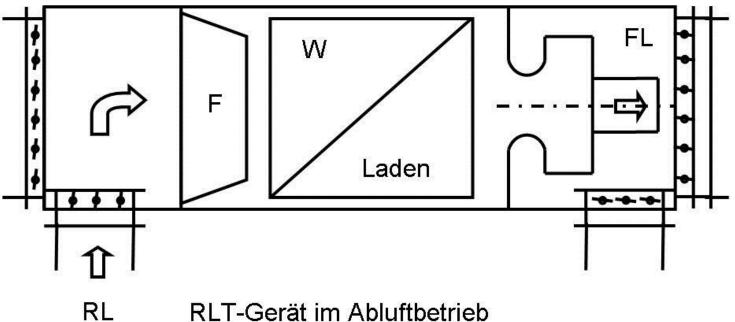
Raumlufttechnik Regenerator

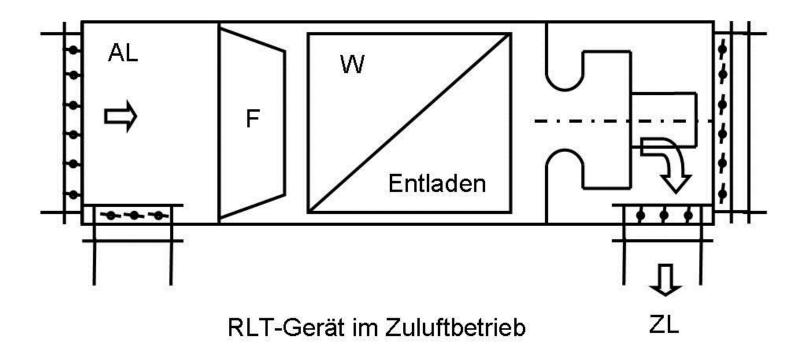

Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik

Prof. Dr.-Ing. Christoph Kaup c.kaup@umwelt-campus.de

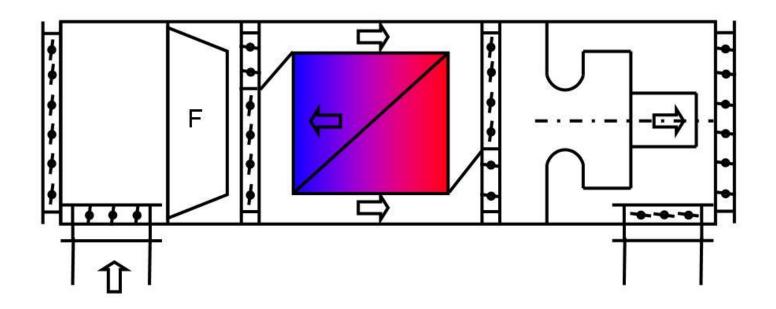
Dipl.-Ing. Christian Backes backes@howatherm.de

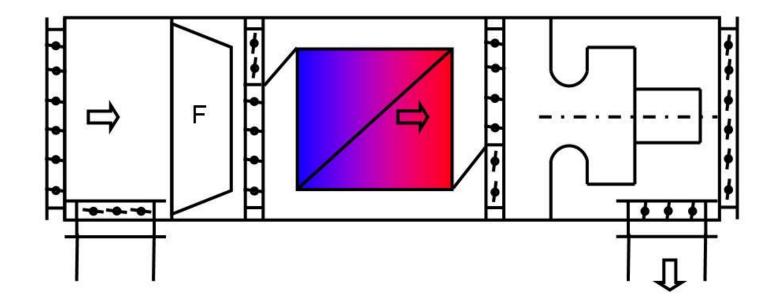


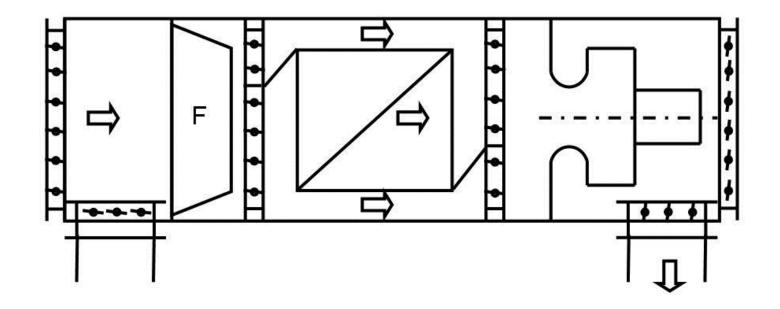

Umschaltsystem



Umschaltsystem






Abluftbetrieb und Ladezyklus des Regenerators

Zuluftbetrieb und Entladezyklus des Regenerators

Bypassbetrieb

Temperaturleitfähigkeit a

"Wärmediffusität"

Maß für den **Temperaturstrom** bei **Temperaturänderungen**Maß für die **Geschwindigkeit des Ausgleichs**, unterschiedliche Temperaturen innerhalb des Materials.
Eine Temperaturänderung pflanzt sich in einem Stoff umso
schneller fort, je größer die a dieses Stoffes ist.

$$a = \lambda / (\rho \cdot c_p)$$

a Temperaturleitfähigkeit [m²/s]

Wärmeeindringkoeffizient b

Maß für die **Fähigkeit eines Speichermaterials Wärme** aufzunehmen oder wieder abzugeben.

Je größer der Wärmeeindringkoeffizient ist, desto mehr Wärme wird aufgenommen oder abgegeben und desto schneller kann Wärme an der Oberfläche aufgenommen und in das Material abgeleitet werden.

$$b = \sqrt{(\lambda \cdot \rho \cdot c_p)}$$

b Wärmeeindringkoeffizient [J/(m² K s^{0.5})]

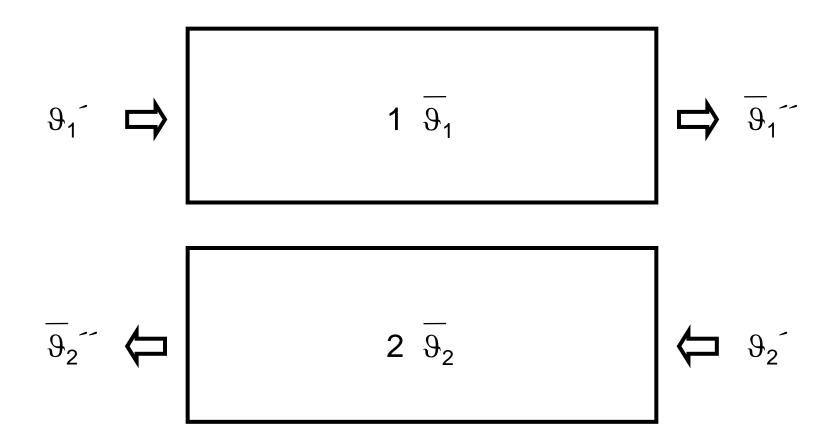
Wärmespeichervermögen Q_s

Wärmemenge, die das Material bei einer Temperaturdifferenz von 1 K speichern oder abgeben kann.

Je größer Q_s desto träger reagiert die Speichermasse auf Temperatur- und Wärmestromveränderungen.

$$Q_s = \rho \cdot c_p \cdot V$$

Q_s Wärmespeichervermögen [J/K]


V Speichervolumen [m³]

Ausgewählte Materialien

	ρ kg/m³	c_p J/kg/K	λ W/(m K)	Q _s KJ/m³/K	b J/(m² K s ^{0.5})	a m²/s x 10 ⁶
Kupfer	8.920	385	401,00	3.434	37.109	116,77
Aluminium	2.700	900	237,00	2.430	23.998	97,53
Stahl	7.800	420	48,00	3.276	12.540	14,65
Graphit	2.250	709	165,00	1.595	16.224	103,43
Wasser	1.000	4.190	0,58	4.190	1.559	0,14

Wärmekapazitäten

$$Q_2 = Q_1$$

$$\dot{W}_2 \cdot \dot{t}_2 \cdot (\overline{\vartheta}_2 - \vartheta_2) = \dot{W}_1 \cdot \dot{t}_1 \cdot (\overline{\vartheta}_1 - \overline{\vartheta}_1)$$

 $\overline{\vartheta}_{i}$ Durchschnittstemperatur der Gasströme (i = 1 / 2)

 $\overline{\vartheta}_{i}$ Durchschnittsaustrittstemperatur (i = 1 / 2)

Wärmekapazitäten

$$\overline{\vartheta}_1 - \overline{\vartheta}_2 = \overline{\vartheta}_1^{-} - \vartheta_2^{-} + (W_2 \cdot t_2 - W_1 \cdot t_1) / W_1 / t_1 \cdot (\overline{\vartheta}_2 - \vartheta_2^{-})$$

 $\overline{9}_1$ - $\overline{9}_2$ mittlere Temperaturunterschied der beiden Gasströme

Erzwungene Konvektion

Platte mit vorderer Stoßkante

Nu_{turb} =
$$\xi$$
/8 • Re • Pr / [1 + 12.7 • $\sqrt{(\xi/8)}$ • (Pr^{2/3} -1)]

turbulenter Strömung 5 • 10^5 < Re < 10^7 und 0.6 < Pr < 2000

 ξ = Widerstandsbeiwert der Platte mit:

$$\xi = 0.296 \cdot \text{Re}^{-0.2}$$

$$\alpha_{1/2} = \text{Nu} \cdot \lambda / I$$

Erzwungene Konvektion

Platte

$$Nu_{lam} = 0.664 \cdot \sqrt{Re \cdot Pr^{1/3}}$$

laminare Grenzschicht Re < 5 • 10⁵ und 0.6 < Pr < 2000

$$Nu = \sqrt{(Nu_{lam}^2 + Nu_{turb}^2)}$$

Wärmedurchgangskoeffizient

1 / k =
$$(t_1 + t_2) \cdot [1 / \alpha_1 / t_1 + 1 / \alpha_2 / t_2 + (1 / t_1 + 1 / t_2)$$

 $\cdot d / \lambda_s \cdot \Phi]$

 α_i Wärmeübergangskoeffizient der Periode (i = 1 / 2)

t_i Zeitintervalle pro Periode (i = 1 / 2)

Φ Hilfsfunktion (Speicherung)

Wärmedurchgangskoeffizient

$$\Phi = 1/6 - 0.00556 \cdot s^2/2/a \cdot [1/t_1 + 1/t_2]$$

gilt für Platten mit: $s^2 / 2 / a \cdot [1 / t_1 + 1 / t_2] \le 10$

 $a = \lambda / (\rho \cdot c_p)$ Temperaturleitfähigkeit

s Dicke der Regeneratorplatten

Wärmemenge

$$Q = k \cdot A (t_1 + t_2) \cdot \Delta \theta_m$$

$$\eta = (1 - e^{(\mu - 1) \cdot NTU}) / (1 - \mu \cdot e^{(\mu - 1) \cdot NTU})$$

η Wirkungsgrad

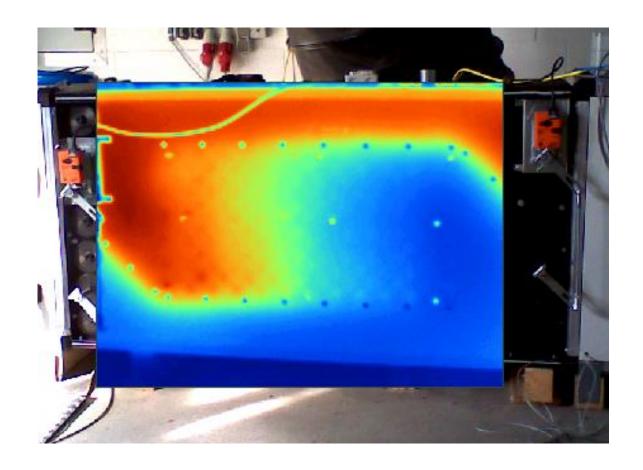
μ Wärmekapazitätenverhältnis mit:

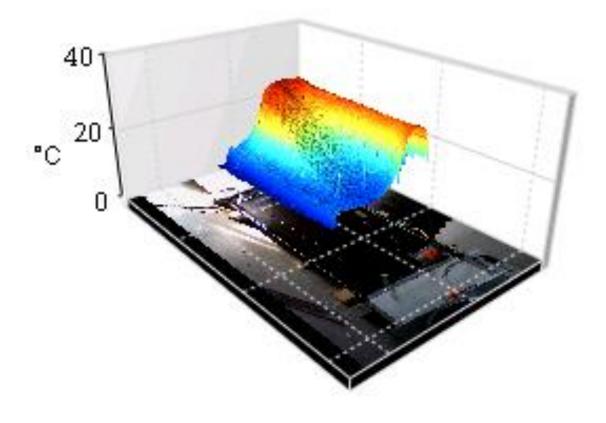
$$\mu = \dot{m}_2 \cdot c_p \cdot t_2 / \dot{m}_1 \cdot c_p \cdot t_1$$

NTU =
$$k \cdot A / \dot{W}_2$$
 $\dot{W}_2 = \dot{m}_2 \cdot c_p$

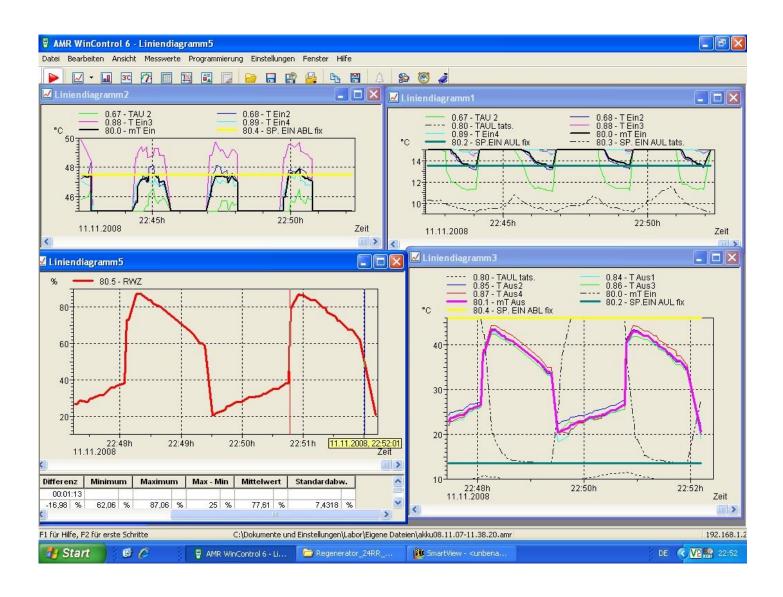
Mittlere log. Temperaturdifferenz

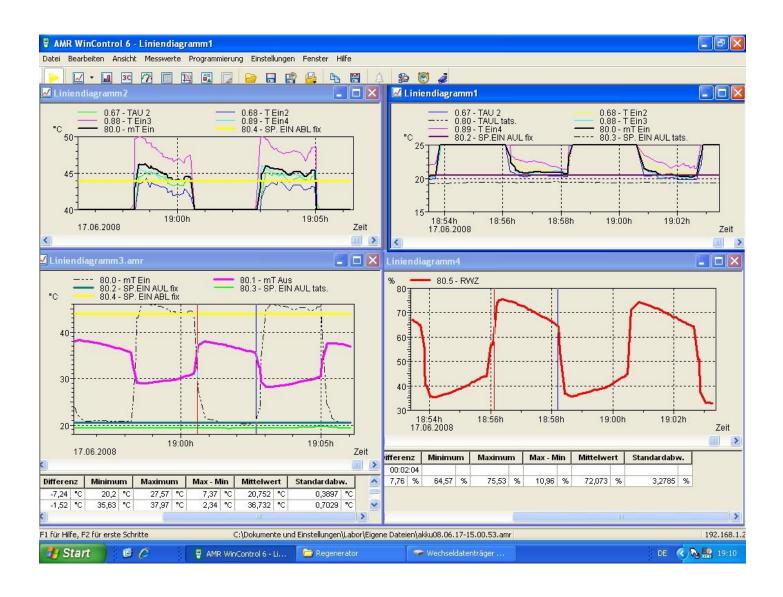
$$\Delta \theta_{\mathsf{m}} = (\theta_{\mathsf{1}} - \overline{\theta_{\mathsf{2}}}) - (\overline{\theta_{\mathsf{1}}} - \overline{\theta_{\mathsf{2}}}) / \ln ((\theta_{\mathsf{1}} - \overline{\theta_{\mathsf{2}}}) / (\overline{\theta_{\mathsf{1}}} - \overline{\theta_{\mathsf{2}}}))$$


für:
$$(\theta_1 - \overline{\theta_2}) > (\overline{\theta_1} - \theta_2)$$



DE 10 2007 033 055.5-34





Herzlichen Dank

Aufmerksamkeit

Raumlufttechnik Wärmeübertragung

Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik

Prof. Dr.-Ing. Christoph Kaup c.kaup@umwelt-campus.de

Dipl.-Ing. Christian Backes backes@howatherm.de

