

Raumlufttechnik Wärmeübertragung

Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik

Prof. Dr.-Ing. Dr. Christoph Kaup

c. kaup@umwelt-campus.de

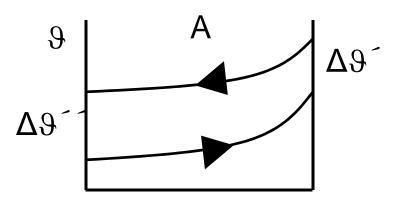
Wärmeübertragung

$$\dot{Q}_1 = \dot{Q}_2$$

$$\dot{Q} = \dot{m} \cdot c_p \cdot \Delta \vartheta$$

$$\dot{m} = \dot{V} \cdot \rho$$

$$\dot{W} = \dot{m} \cdot c_p$$


$$\mu = W_1 / W_2$$
 wobei $W_1 < W_2$

Wärmeübertragung

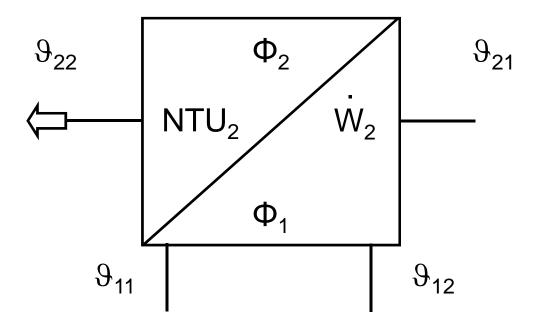
$$\dot{Q} = k \cdot A \cdot \Delta \theta_{m}$$

$$1/k = 1/\alpha_1 + d/\lambda + 1/\alpha_2$$

$$\Delta \theta_{\rm m} = (\Delta \theta^{-} - \Delta \theta^{-}) / \ln (\Delta \theta^{-} / \Delta \theta^{-})$$

bei
$$\Delta \theta$$
 <> $\Delta \theta$

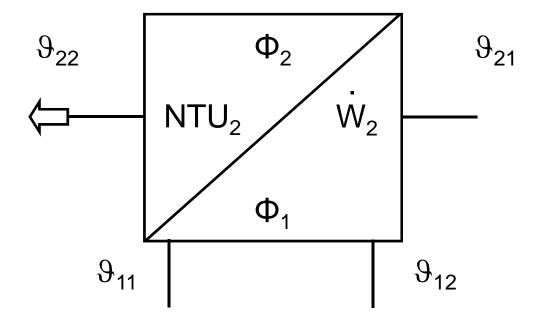
$$\Delta \theta_{\rm m} = (\Delta \theta^{-} + \Delta \theta^{-}) / 2$$


bei
$$\Delta \theta^{-} = \Delta \theta^{-}$$

Wärmeübertragerkennzahl

$$NTU_2 = (k \cdot A)_2 / W_2$$

$$W_2 = \dot{m}_2 \cdot c_{p2}$$


$$NTU_1 = (k \cdot A)_1 / W_1$$

$$W_1 = \dot{m}_1 \cdot c_{p1}$$

Betriebscharakteristik

$$\Phi_2 = (\theta_{22} - \theta_{21}) / (\theta_{11} - \theta_{21})$$

$$\Phi_1 = (\theta_{11} - \theta_{12}) / (\theta_{11} - \theta_{21})$$

Betriebscharakteristik

$$\Phi_2 = (\vartheta_{22} - \vartheta_{21}) / (\vartheta_{11} - \vartheta_{21})$$

$$\Phi_1 = (\theta_{11} - \theta_{12}) / (\theta_{11} - \theta_{21})$$

$$\mu_2 = W_2 / W_1 = (\dot{m}_2 \cdot c_{p2}) / (\dot{m}_1 \cdot c_{p1})$$

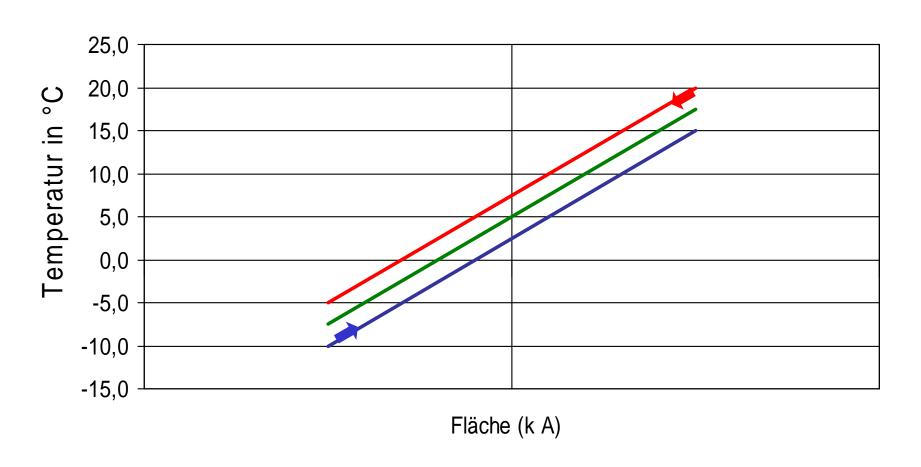
$$\mu_1 = 1 / \mu_2$$

$$\Phi_1 = \Phi_2 \bullet \mu_2$$

Betriebscharakteristik

$$NTU_2 = (k \cdot A)_2 / W_2$$

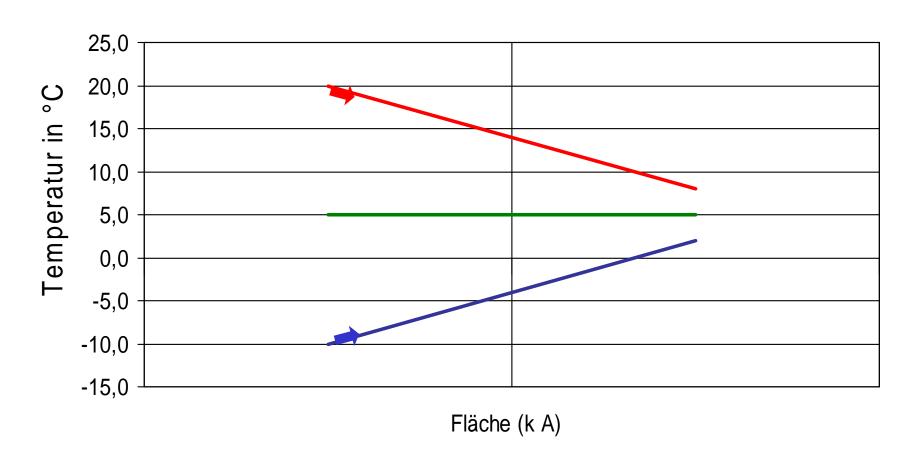
$$NTU_1 = (k \cdot A)_1 / W_1$$


$$NTU_1 = NTU_2 \cdot \mu_2 = NTU_2 / \mu_1$$

$$NTU_2 / NTU_1 = \Phi_2 / \Phi_1 = 1 / \mu_2 = \mu_1$$

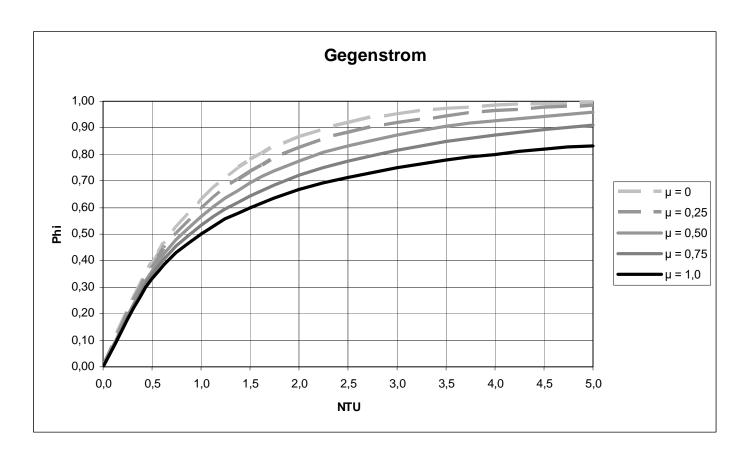
Gegenstrom

Temperaturdiagramm

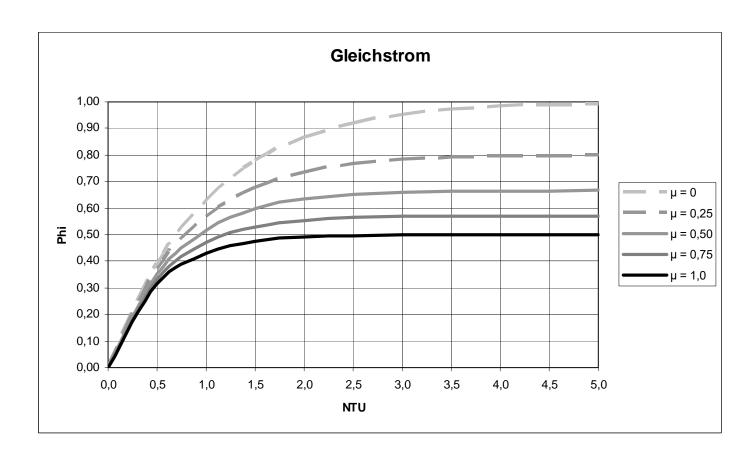


© Prof. Dr.-Ing. Dr. Christoph Kaup

Gleichstrom


Temperaturdiagramm

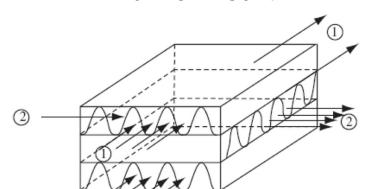
Übertragungsgrad im reinem Gegenstrom

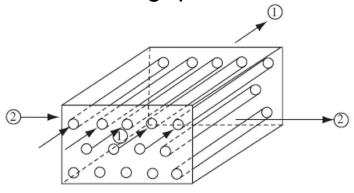

$$\begin{split} \Phi_i &= (1 - e^{\left[(\mu_i - 1) \bullet NTU_i \right]}) \, / \, (1 - \mu_i \bullet e^{\left[(\mu_i - 1) \bullet NTU_i \right]}) \text{ bei } \quad \mu <> 1 \\ \Phi &= NTU \, / \, (1 + NTU) \end{split}$$

Übertragungsgrad im reinem Gleichstrom

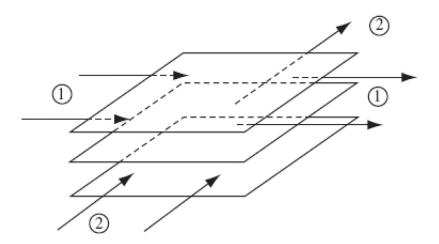
$$\Phi_i = (1 - e^{[-NTU_i \cdot (1 + \mu_i)]}) / (1 + \mu_i)$$

Übertragungsgrad im Kreuzstrom (quervermischt)

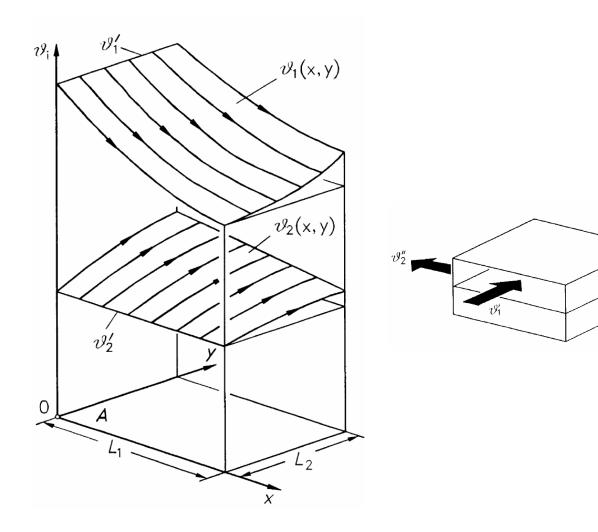

$$\Phi_{i} = 1 / (1 / (1 - e^{[-NTU_{i}]}) + \mu_{i} / (1 - e^{[-\mu_{i} \cdot NTU_{i}]}) - 1 / NTU_{i})$$



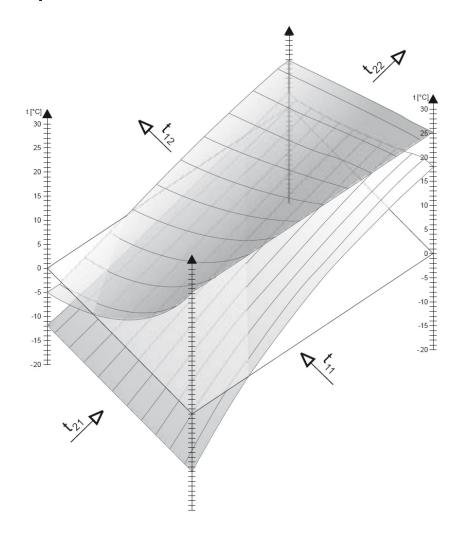
Kreuzstrom


unvermischt

einseitig quervermischt

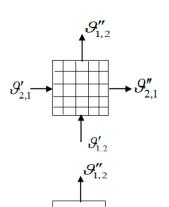

beidseitig quervermischt

Quelle Rudi Marek, Klaus Nitsche


Temperaturprofil im Kreuzstrom

Quelle Wolfgang Polifke, Jan Kopitz

Temperaturprofil im Kreuzstrom



Quelle Hoval

Kreuzstromformen

$$F = \frac{1}{(1 + a \cdot \mu_1^{d \cdot b} NTU_1^b)^c}$$

Faktoren

a

b

C

d

Reiner Kreuzstrom

0.433

1.6

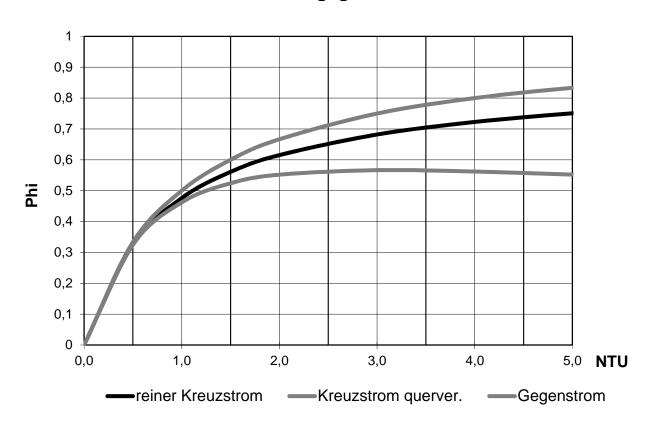
0.267

0.5

Quervermischt

0.251 2.06

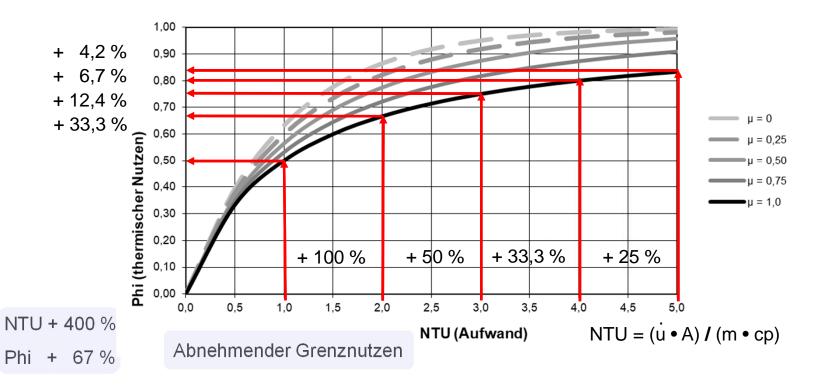
0.677


0.5

Übertragungsgrad zum reinem Gegenstrom

$$\begin{split} &\Phi_i = (1 - e^{\left[\left(\mu_i - 1 \right) \bullet F \bullet \ NTU_i \right]}) \, / \, (1 - \mu_i \bullet e^{\left[\left(\mu_i - 1 \right) \bullet F \bullet \ NTU_i \right]}) \quad \text{bei} \quad \mu <> 1 \\ &\Phi = F \bullet NTU \, / \, (1 + F \bullet NTU) \qquad \qquad \qquad \text{bei} \quad \mu = 1 \end{split}$$

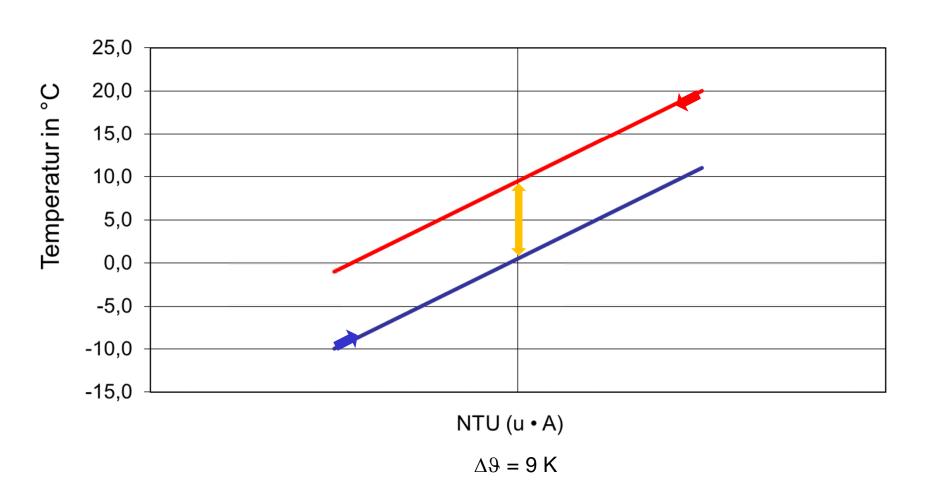
Kreuzgegenstrom



Übertragungsgrad im Gegenstrom

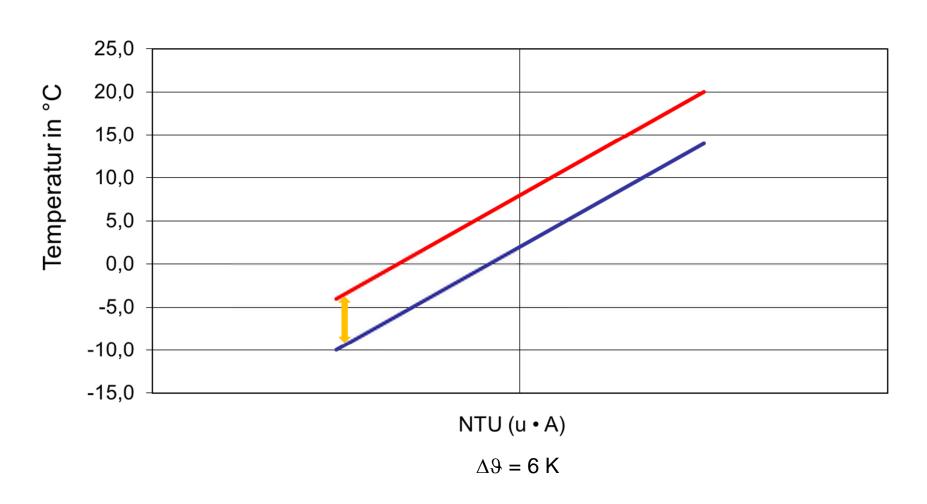
$$\Phi_{i} = (1 - e^{[(\mu_{i} - 1) \cdot NTU_{i}]}) / (1 - \mu_{i} \cdot e^{[(\mu_{i} - 1) \cdot NTU_{i}]}) \text{ at } \mu <> 1$$

$$\Phi = NTU / (NTU + 1) \qquad \text{at } \mu = 1$$


Gegenstrom

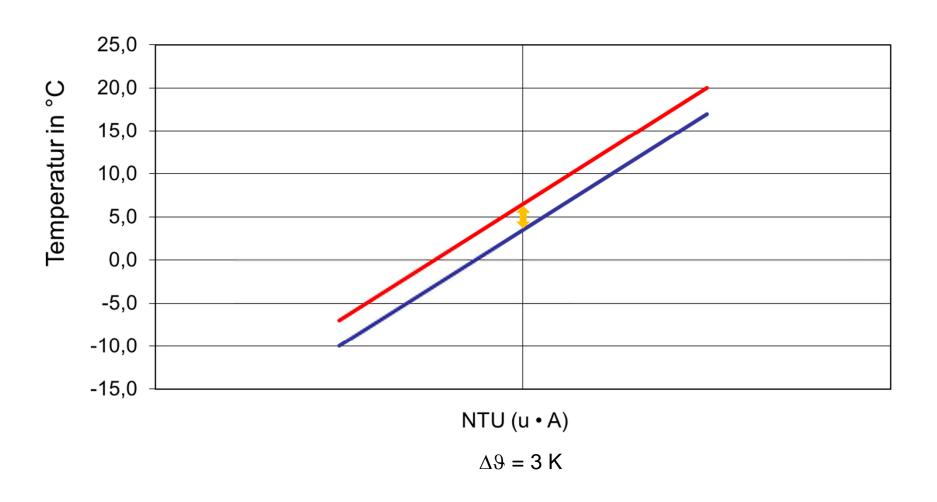
Gegenstrom

Temperatur Diagramm Φ = 70 %

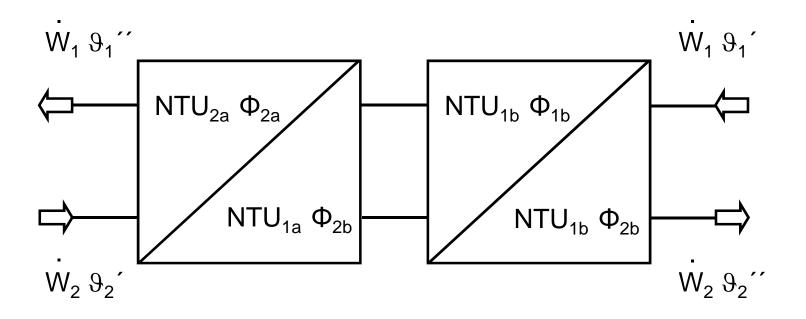


© Prof. Dr.-Ing. Dr. Christoph Kaup

Counter current


Temperatur Diagramm Φ = 80 %

Counter current



Temperatur Diagramm Φ = 90 %

Gekoppelte Wärmeübertrager

$$NTU_{1ges} = NTU_{1a} + NTU_{1b}$$

$$NTU_{2ges} = NTU_{2a} + NTU_{2b}$$

Gekoppelte Wärmeübertrager

Im Gegenstrom

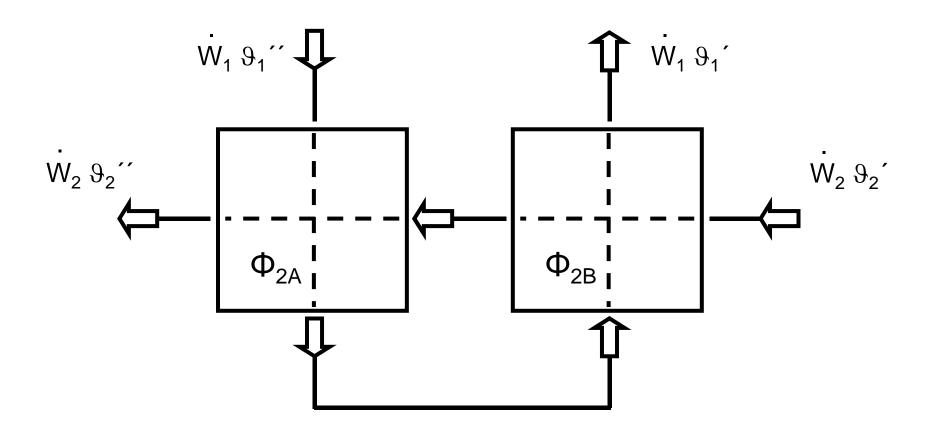
$$\frac{1 - \Phi_{1ges}}{1 - \mu_{1} \cdot \Phi_{1ges}} = \prod_{i=1}^{n} \left[\frac{1 - \Phi_{1i}}{1 - \mu_{1} \cdot \Phi_{1i}} \right] \qquad \mu_{i} <> 1$$

$$\frac{\Phi_{ges}}{1 - \Phi_{ges}} = \frac{\Phi_i}{1 - \Phi_i}$$

$$\mu_i = 1$$

Gekoppelte Wärmeübertrager

Im Gegenstrom

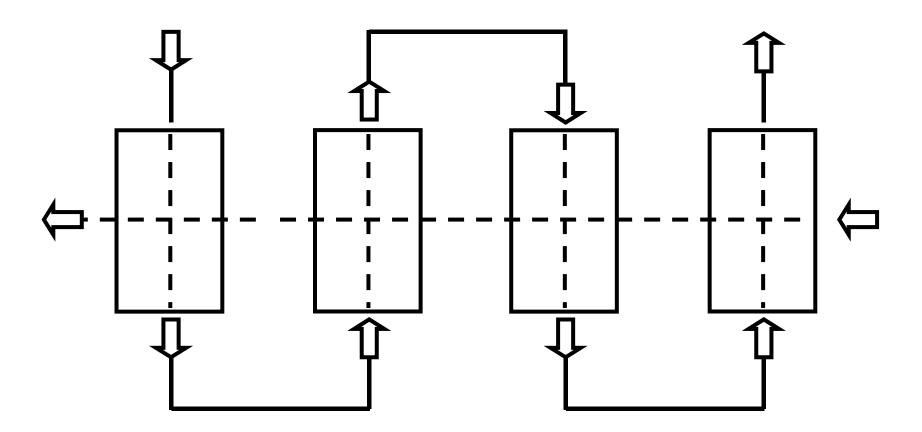

$$\frac{1 - \Phi_{1ges}}{1 - \mu_1 \bullet \Phi_{1ges}} = \left[\frac{1 - \Phi_1}{1 - \mu_1 \bullet \Phi_1} \right]^n \qquad \mu_i <> 1$$

$$\frac{\Phi_{\text{ges}}}{1 - \Phi_{\text{ges}}} = \frac{n \cdot \Phi}{1 - \Phi}$$

$$\mu_i = 1$$

Anordnung Kreuz-Gegenstrom

© Prof. Dr.-Ing. Dr. Christoph Kaup


Zwei gekoppelte Wärmeübertrager

Im Gegenstrom

$$\Phi_{2ges} = (\Phi_{2A} + \Phi_{2B} - (1 + \mu) \cdot \Phi_{2A} \cdot \Phi_{2B}) / (1 - \mu \cdot \Phi_{2A} \cdot \Phi_{2B})$$

Anordnung Kreuz-Gegenstrom (n ≥ 4)

© Prof. Dr.-Ing. Dr. Christoph Kaup

Kreuzgegenstrom Wärmeübertrager

Pro Durchgang eine Rohrreihe mit n ≥ 4 Durchgängen

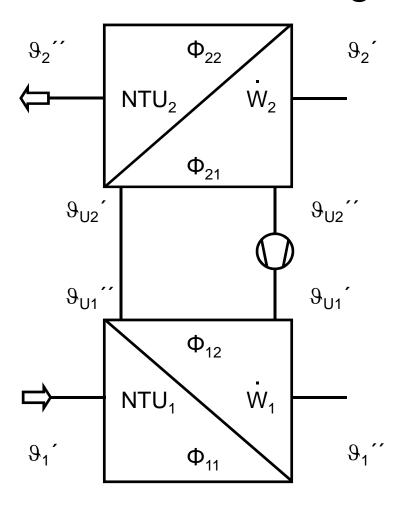
$$F = \frac{n}{NTU_1 / \mu_1} \bullet \frac{3 \cdot \sinh \left(NTU_1 / n \cdot \sqrt{\mu_1} \right)}{1 + 2 \cdot \cosh \left(NTU_1 / n \cdot \sqrt{\mu_1} \right)}$$

n = Anzahl der Durchgänge (Rohrreihen)

F = Korrekturfaktor zum reinen Gegenstrom

Kreuzgegenstrom Wärmeübertrager

Pro Durchgang eine Rohrreihe mit n ≥ 4 Durchgängen


Übertragungsgrad im Kreuzgegenstrom

$$\Phi_{i} = (1 - e^{[(\mu_{i} - 1) \cdot NTU_{i} \cdot F]}) / (1 - \mu_{i} \cdot e^{[(\mu_{i} - 1) \cdot NTU_{i} \cdot F]}) \text{ bei } \mu <> 1$$

$$\Phi = NTU \cdot F / (1 + NTU \cdot F)$$
 bei $\mu = 1$

F = Korrekturfaktor zum reinen Gegenstrom

Gekoppelte Wärmeübertrager

© Prof. Dr.-Ing. Dr. Christoph Kaup

Gekoppelte Wärmeübertrager

Apparat 1

$$NTU_{11} = (k \cdot A)_1 / W_1$$

$$\mu_{11} = \dot{W}_1 / \dot{W}_u$$

$$\Phi_{11} = (\theta_1 - \theta_1) / (\theta_1 - \theta_{u1})$$

Gekoppelte Wärmeübertrager

Apparat 2

$$NTU_{22} = (k \cdot A)_2 / \dot{W}_2$$

$$\mu_{22} = \dot{W}_2 / \dot{W}_u$$

$$\Phi_{22} = (\theta_2 \text{''} - \theta_2 \text{'}) / (\theta_{u2} \text{'} - \theta_2 \text{'})$$

Gekoppelte Wärmeübertrager

Für das Gesamtsystem gilt:

$$\Phi_{\text{2ges}} = (\vartheta_2 \text{''} - \vartheta_2 \text{'}) / (\vartheta_1 \text{'} - \vartheta_2 \text{'})$$

$$\mu_{2ges} = W_2 / W_1 = 1 / \mu_{1ges}$$

Gekoppelte Wärmeübertrager

Dimensionslose Temperaturänderung des Gesamtsystems

$$1/\Phi_{2ges} = 1/\Phi_{22} + 1/\Phi_{11} \cdot \mu_{2ges} - \mu_{22}$$

© Prof. Dr.-Ing. Dr. Christoph Kaup

Gekoppelte Wärmeübertrager

Optimaler umlaufender Wärmekapazitätsstrom

1 /
$$W_{sopt} = (k \cdot A)_1 / [(k \cdot A)_1 + (k \cdot A)_2] / W_1 + (k \cdot A)_2 / [(k \cdot A)_1 + (k \cdot A)_2] / W_2$$

$$\mu_{22} = \dot{W}_2 / \dot{W}_u$$

$$\mu_{11} = \dot{W}_1 / \dot{W}_u$$

Gekoppelte Wärmeübertrager

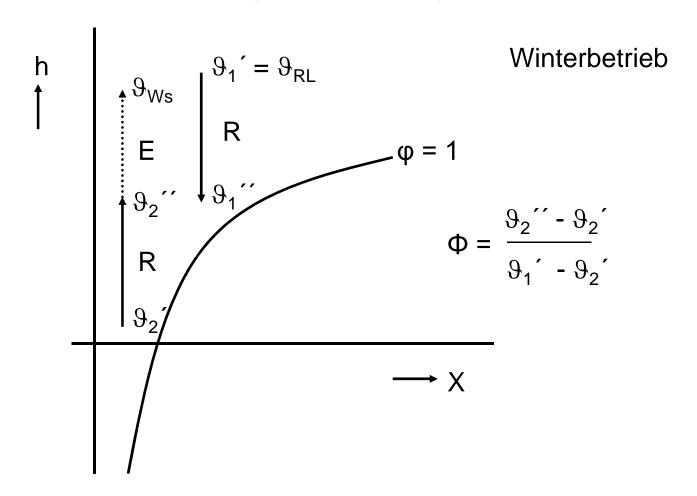
Wenn optimaler Umlaufstrom erfüllt

$$1 / (k \cdot A)_{eff} = 1 / (k \cdot A)_1 + 1 / (k \cdot A)_2$$

Wärmeübertrager

Gekoppelte Wärmeübertrager

Bei gleichen Luftmengen gilt


$$\mu_{2ges} = W_1 / W_2 = 1$$
 und $\mu_{11} = \mu_{22} = 1$

Gesamtübertragungsgrad

$$1/\Phi_{2ges} = 1/\Phi_{22} + 1/\Phi_{11} - 1$$

Wärmerückgewinnung

W 38

Effizienz der WRG

Φ = Nutzen der WRG / Potenzial der WRG

$$\Phi = \dot{Q}_{WRG} / \dot{Q}_{P}$$

Q_{WRG} Leistung der WRG [kW]

Q_P maximal mögliche Leistung
 aufgrund des Temperaturpotenzials [kW]

Effizienz der WRG

$$Q_{WRG} = m_2 \bullet (h_2 \tilde{} - h_2 \tilde{})$$

m Massenstrom der Luft [kg / s]

h Enthalpie der Luft [kJ / kg]

$$\Phi_h = Q_{WRG} / Q_P = m_2 \cdot (h_2 '' - h_2 ') / [m_2 \cdot (h_1 ' - h_2 ')]$$

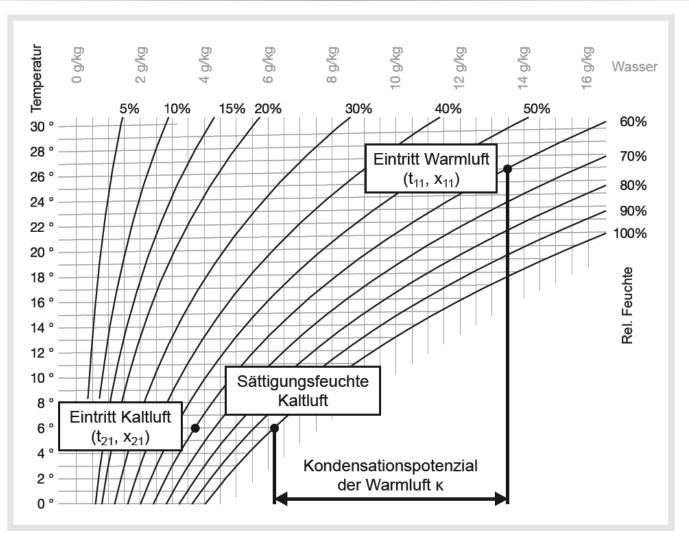
$$\Phi_h = (h_2 \tilde{\ } - h_2 \tilde{\ }) / (h_1 \tilde{\ } - h_2 \tilde{\ })$$

Effizienz der WRG

Feuchteänderungsgrad Ψ

$$\Psi = (x_2'' - x_2') / (x_1' - x_2')$$

x absolute Luftfeuchte der Luft [g / kg]


Effizienz der WRG

Kondensationspotenzial κ

$$\kappa = x_1' - x_{2S}$$

x_{2s} Sättigungsfeuchte der Kaltluft x₂′

Kondensationspotential κ

Quelle Hoval

W 43

Effizienz der WRG

Enthalphie

$$h = c_{pL} \bullet \vartheta + x \bullet (c_{pD} \bullet \vartheta + r_0)$$

c_{pL} spezifische Wärmekapazität Luft [kJ / (kg • K)]

θ Temperatur [°C]

c_{pD} spez. Wärmekapazität Wasserdampf

r₀ Verdampfungswärme von Wasser [kJ / kg]


Effizienz der WRG

Enthalpie trocken

$$h = c_{pL} \cdot \vartheta$$

$$\Phi_{t} = (\theta_{2} \text{''} - \theta_{2} \text{'}) / (\theta_{1} \text{'} - \theta_{2} \text{'})$$

Quelle Hoval

W 46

Effizienz der WRG

Leckage nach EN16798-3

$$EATR = (q_{sup2} - q_{sup1}) / q_{exh1}$$

$$OACF = q_{sup1} / q_{sup2}$$

EATR Exhaust air transfer ratio

OACF Outrdoor air correction factor

Effizienz der WRG

Leckage nach VDI 3803 B. 5

$$L_1 = m_{11} / (m_{11} - m_{1-2}) = m_{11} / m_1$$

$$L_2 = m_{21} / (m_{21} - m_{2-1}) = m_{21} / m_2$$

L₁ Leckagezahl Fortluftstrom (1)

L₂ Leckagezahl Außenluftstrom (2)

Effizienz der WRG

Leckage nach VDI 3803 B. 5

$$U = m_{1-2} / (m_{21} - m_{2-1}) = m_{1-2} / m_2$$

U Umluftzahl

Effizienz der WRG

Luftströme nach Korrektur (Leckage) VDI 3803 B. 5

$$\dot{m}_{11} = \dot{m}_1 + \dot{m}_{1-2}$$
 $\dot{m}_{12} = \dot{m}_1 + \dot{m}_{2-1}$
 $\dot{m}_{21} = \dot{m}_2 + \dot{m}_{2-1}$
 $\dot{m}_{22} = \dot{m}_2 + \dot{m}_{1-2}$

Ohne Angabe ist von einer Leckage von 10 % auszugehen

Effizienz der WRG

Erforderlichen elektrischen Leistungen (Hilfsleistung)

$$P_{el} = V \cdot \Delta p_{WRG} \cdot 1 / \eta + P_{Zus}$$

P_{el} Elektrische Leistung [KW]

Volumenstrom [m³/s]

Δp_{WRG} Differenzdruck der WRG [Pa]

η Gesamtwirkungsgrad des Antriebs [./.]

P_{Zus} zus. Hilfsenergien (z. B. Pumpen, etc.)

Effizienz der WRG

Leistungsziffer ε

$$\varepsilon = \dot{Q}_{WRG} / P_{el}$$

Effizienz der WRG

Wirkungsgrad nach Kaup (EN 13053)

 η_{WRG} = Nettonutzen der WRG / Potenzial der WRG

$$\eta_{WRG} = (\dot{Q}_{WRG} - P_{el}) / \dot{Q}_{P}$$

$$\eta_{WRG} = (1 - P_{el} / \dot{Q}_{WRG}) / (\dot{Q}_{P} / \dot{Q}_{WRG})$$

Effizienz der WRG

Wirkungsgrad nach Kaup (EN 13053)

$$\eta_{WRG} = (1 - 1 / \epsilon) / (1 / \Phi)$$

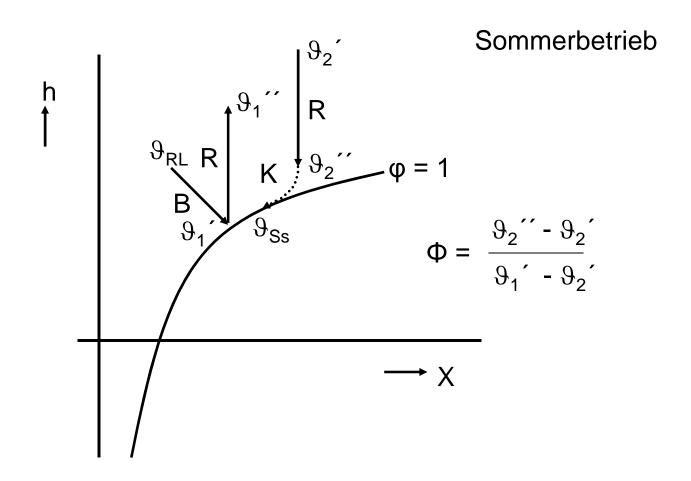
$$\eta_{WRG} = \Phi \cdot (1 - 1 / \epsilon)$$

$$\eta_{WRG} = \Phi \cdot (1 - P_{el} / \dot{Q}_{WRG})$$

Arbeiten

Leistungen für die WRG und den Vorerhitzer

$$Q_{WRG} = m_2 \cdot c_{pL} \cdot (\vartheta_2 '' - \vartheta_2 ')$$


$$\dot{Q}_{E} = \dot{m}_{2} \cdot c_{pL} \cdot (\vartheta_{WS} - \vartheta_{2})$$

θ_{WS} Sollwert der Zuluft [°C]

Q_E Leistung der Nacherwärmerleistung [kW]

Wärmerückgewinnung

Arbeiten

thermischen Leistungen mit der Häufigkeit multipliziert

$$W_{WRG(x, y)} = \dot{Q}_{WRG} \cdot t_{(x, y)}$$

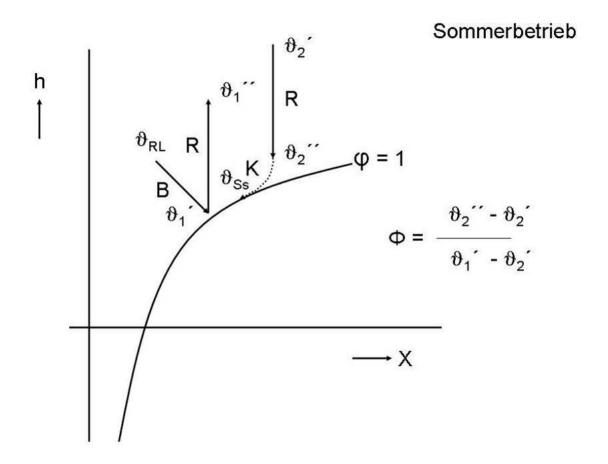
$$W_{E(x, y)} = Q_{E} \cdot t_{(x, y)}$$

t_(x, y) = Zeit der Häufigkeit aus DIN 4710

x Temperatur von -19 bis 37 [°C]

y Absolute Feuchte von 0 bis 19 [g/kg]

Arbeiten


Arbeiten des Jahres = Summe der Einzelwerte

$$W_{WRG} = \sum W_{WRG(x, y)}$$

$$W_E = \sum W_{E(x, y)}$$

Wärmerückgewinnung

Arbeiten

energetischen Aufwendungen der Hilfsenergien

$$W_{el(x, y)} = P_{el} \cdot t_{(x, y)}$$

elektrischen Arbeiten = Summe der Einzelwerte:

$$W_{el} = \sum W_{el(x, y)}$$

Effizienz der WRG

Jahresarbeitszahl

$$\varepsilon_{a} = W_{WRG} / (f \cdot W_{el})$$

f Wertungsfaktor (z. B.
$$f = 2$$
)

Effizienz der WRG

Deckungsgrad

thermischer Jahresdeckungsgrad

$$\phi_{Tha} = W_{WRG} / W_{Warmebedarf}$$

energetischer Jahresdeckungsgrad

$$\varphi_{Ea} = (W_{WRG} - f \cdot W_{el}) / W_{Warmebedarf}$$

Effizienz der WRG

Jahreswirkungsgrad

 η_{WRGa} = Nettonutzen der WRG / Potenzial der WRG

Unterschiedliche Wertung

$$\eta_{WRGa} = (W_{WRG} - f \bullet W_{el}) / W_{P}$$

$$\eta_{WRGa} = (1 - f \cdot W_{el} / W_{WRG}) / (W_{P} / W_{WRG})$$

Effizienz der WRG

Jahreswirkungsgrad

$$\eta_{WRGa} = \Phi \cdot (1 - f / \epsilon_a)$$

oder bei einer rein energetische Betrachtung mit f = 1

$$\eta_{WRG} = \Phi \cdot (1 - 1 / \epsilon_a)$$

W 64

Umrechnung WRG Grade

geforderten Übertragungsgrad Φ_{1:1}

bei
$$\mu = W_2 / W_1 = (m_2 \cdot c_{pL}) / (m_1 \cdot c_{pL}) = 1$$

$$NTU_{1:1} = \Phi_{1:1} / (1 - \Phi_{1:1})$$

Umrechnung WRG Grade

geänderten Massenströme

$$NTU_{erf} = NTU_{1:1}$$

$$\mu_{\text{tats}} = W_2 / W_1 = m_2 \cdot c_{\text{pL}} / m_1 \cdot c_{\text{pL}}$$

Bedingung $NTU_2 = const.$ und damit k = const.

Umrechnung WRG Grade

Übertragungsgrad im reinem Gegenstrom

$$\Phi_{\text{tats}} = (1 - e^{\left[(\mu_{\text{tats}} - 1) \cdot \text{NTU}_{\text{erf}} \right]}) /$$

$$(1 - \mu_{\text{tats}} \cdot e^{\left[(\mu_{\text{tats}} - 1) \cdot \text{NTU}_{\text{erf}} \right]})$$

Umrechnung WRG Grade

tatsächlicher Übertragungsgrad Φ_{tats.}

bei
$$\mu = W_2 / W_1 = (m_2 \cdot c_{pL}) / (m_1 \cdot c_{pL}) <> 1$$

NTU = 1 / (1 -
$$\mu$$
) • In ((1 - μ • $\Phi_{tats.}$) / (1 - $\Phi_{tats.}$))

Umrechnung WRG Grade

Gleiche Massenströme

$$NTU_{tats.} = NTU_{1:1}$$

$$\mu_{1:1} = W_2 / W_1 = m_2 \cdot c_{pL} / m_1 \cdot c_{pL} = 1$$

Bedingung $NTU_2 = const.$ und damit k = const.

Umrechnung WRG Grade

Übertragungsgrad im reinem Gegenstrom

$$\Phi_{1:1} = NTU / (NTU + 1)$$

Umrechnung WRG Grade

vereinfacht nach Kaup

$$\Phi_{\text{emp}} = \Phi_{1:1} \bullet (\dot{m}_1 / \dot{m}_2)^{0,4}$$

$$\label{eq:mit_matrix} \begin{array}{ll} \text{mit} & 0,67 \leq \ \mu_{tats} \leq 1,25 \\ \\ \text{und} & \Phi_{1:1} \leq 0,8 \end{array}$$

Umrechnung WRG Grade

vereinfacht nach EN 13053

$$\Phi_t = \Phi_{1:1} / (1 + m_2 / m_1) \cdot 2$$

$$\label{eq:mit_matrix} \begin{array}{ll} \text{mit} & 0,67 \leq \ \mu_{tats} \leq 1,25 \\ \\ \text{und} & \Phi_{1:1} \leq 0,8 \end{array}$$

Wärmerückgewinnung

Umrechnung WRG Grade

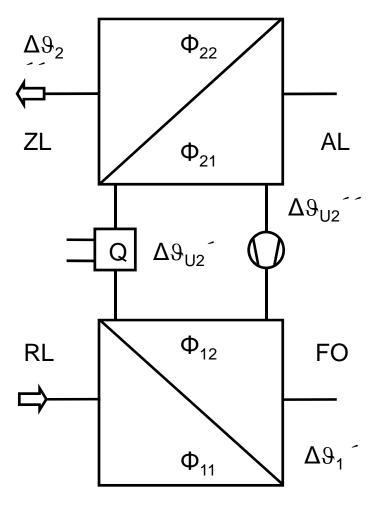
vereinfacht nach Kaup

$$\Phi_{1:1} = \Phi_{tats.} / (m_1 / m_2)^{0.4}$$

$$\label{eq:mit_matrix} \begin{array}{ll} \text{mit} & 0,67 \leq \ \mu_{tats} \leq 1,25 \\ \\ \text{und} & \Phi_{1:1} \leq 0,8 \end{array}$$

Wärmerückgewinnung

Umrechnung WRG Grade


vereinfacht nach prEN 13053

$$\Phi_{1:1} = \Phi_t \cdot (1 + m_2 / m_1) / 2$$

$$\label{eq:mit_matrix} \begin{array}{ll} \text{mit} & 0,67 \leq \ \mu_{tats} \leq 1,25 \\ \\ \text{und} & \Phi_{1:1} \leq 0,8 \end{array}$$

Einfluss Vorlauf

Änderung Vorlauf

Temperaturänderung im Umlaufstrom:

$$\Delta \vartheta_{U2}' = \Delta \vartheta_2'' / \Phi_{22}$$

Δθ₂ gewünschte Lufterwärmung [K]

Δθ_{U2} benötigte Temp.änderung am Eintritt [K]

Φ₂₂ luftseitiger Übertragungsgrad App. 2 [./.]

Änderung Vorlauf

Temperaturänderung des Umlaufstroms:

$$\Delta \theta_{U2}^{\prime\prime} = \Delta \theta_2^{\prime\prime} \cdot (1 / \Phi_{21} - 1)$$

 $\Delta \vartheta_{U2}$ Temperaturänderung am Austritt [K] Φ_{21} medienseitiger Übertragungsgrad App. 2 [./.]

Änderung Vorlauf

Einfluss auf die Fortlufttemperatur mit:

$$\Delta \vartheta_1' = \Delta \vartheta_{U2}'' \cdot \Phi_{11}$$

 $\Delta \theta_1$ Temperaturänderung der Fortluft [K]

Φ₁₁ luftseitiger Übertragungsgrad App. 1 [./.]

Änderung Vorlauf

Zusammengesetzte Änderungsgleichung

$$\Delta \theta_1' = \Delta \theta_2'' \cdot (1 / \Phi_{21} - 1) \cdot \Phi_{11}$$

Temperaturübertragungsgrades $\Delta\Phi_{2ges}$ mit Beeinflussung

$$\Delta\Phi_{2ges} = \Delta\Phi_{2ges\ 0} - \Delta\Phi_{Korr}$$

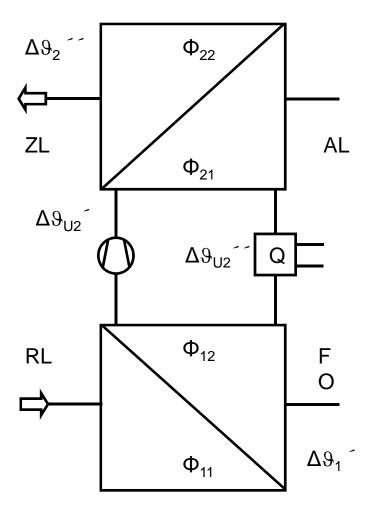
Änderung Vorlauf

$$\Delta \Phi_{Korr} = \Delta \theta_1' / (\theta_1' - \theta_2') / \mu_{2ges}$$

$$\Delta\Phi_{2ges} = \Delta\Phi_{2ges\ 0} - \Delta\vartheta_{1} ' / (\vartheta_{1} - \vartheta_{2} ') / \mu_{2ges}$$

Änderung Vorlauf

Einfluss nach Jüttemann


$$\Delta \theta_{U2}'' = \Delta \theta_{U2}' \cdot (1 - \Phi_{22}) / \Phi_{22} / (2 - \Phi_{22})$$

gilt mit
$$\mu_{2ges} = \dot{W}_1 / \dot{W}_2 = 1$$
 und

$$\mu_{11} = \mu_{22} = 1$$
 und $\Phi_{22} = \Phi_{11} = \Phi_{21}$

Einfluss Rücklauf

Änderung Rücklauf

Temperaturänderung im Umlaufstrom:

$$\Delta \vartheta_{U2}' = \Delta \vartheta_1' \cdot (1 / \Phi_{12} - 1)$$

 $\Delta \vartheta_{U2}$ benötigte Temp.änderung am Eintritt [K] Φ_{12} medienseitiger Übertragungsgrad App. 1 [./.]

Änderung Rücklauf

Einfluss auf die Zulufttemperatur

$$\Delta \vartheta_2$$
 ' = $\Delta \vartheta_{U2}$ • Φ_{22}

Δθ₂ Temperaturänderung der Zuluft [K]

Φ₂₂ luftseitiger Übertragungsgrad App. 2 [./.]

Änderung Rücklauf

Zusammengesetzte Änderungsgleichung

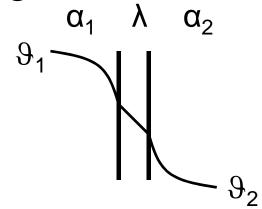
$$\Delta \theta_2' = \Delta \theta_1' \cdot (1 / \Phi_{12} - 1) \cdot \Phi_{22}$$

Temperaturübertragungsgrades $\Delta\Phi_{2ges}$ mit Beeinflussung

$$\Delta \Phi_{2ges} = \Delta \Phi_{2ges \ 0} - \Delta \Phi_{Korr}$$

Änderung Rücklauf

$$\Delta \Phi_{Korr} = \Delta \theta_2' / (\theta_1' - \theta_2')$$


$$\Delta \Phi_{\text{2ges }0} = \Delta \Phi_{\text{2ges }0} - \Delta \theta_{2}' / (\theta_{1}' - \theta_{2}')$$

Konvektiver Wärmeübergang

$$\dot{Q} = k \cdot A \cdot \Delta \vartheta$$

$$1/k = 1/\alpha_1 + d/\lambda + 1/\alpha_2$$

- k Wärmedurchgangskoeffizient [W / m² / K]
- A Wärmeübertragungsfläche [m²]
- α Wärmeübergangskoeffizient [W / m² / K]
- λ Wärmeleitfähigkeit [W / m / K]

Konvektiver Wärmeübergang

$$\alpha = \dot{q} / (\theta_I - \theta_W) = Nu \cdot \lambda / I$$

Nu = f (Pr, Re, Gr, Ra) Nußelt-Zahl

Pr Prandl-Zahl

Re Reynold-Zahl

Gr Grashof-Zahl

(Ra Rayleigh-Zahl)

Konvektion

$$Pr = \rho \cdot \nu \cdot c_p / \lambda$$
 (temp.abh. Stoffgröße)

Re =
$$\rho \cdot w \cdot I / \eta = w \cdot I / v$$
 (Strömungskennzahl)

- ρ Dichte des Medium [kg / m³]
- v kinematische Viskosität [m²/s]
- c_p spezifische Wärmekapazität [KJ / kg / K]
- w Strömungsgeschwindigkeit [m / s]
- I charakteristische WÜ Länge [m]

Freie Konvektion

$$Gr = g \cdot I^3 \cdot \beta \cdot (\theta_w - \theta_f) / v^2$$
 (Auftrieb zur Viskosität)

$$\beta = 1 / T_f$$
 Ra = Gr • Pr

g Erdbeschleunigung [m / s²]

θ_W Wandtemperatur [°C]

 θ_f Fluidtemperatur [°C]

T_f absolute Fluidtemperatur [K]

 $I = L \cdot B / 2 / (L + B) (Platte)$

Konvektiver Wärmeübergang

Oberseite einer Platte

$$Nu = 0.766 \cdot [Ra \cdot f_2(Pr)]^{0.2}$$

Für laminare Strömung Ra • f₂(Pr) < 7 • 10⁴

Nu = 0.15 • [Ra •
$$f_2(Pr)$$
]^{1/3}

Für turbulente Strömung Ra • $f_2(Pr) > 7 • 10^4$

$$f_2(Pr) = [1 + (0.322 / Pr)^{11/20}]^{-20/11}$$

Konvektiver Wärmeübergang

Unterseite einer Platte

$$Nu = 0.6 \cdot [Ra \cdot f_1(Pr)]^{0.2}$$

Für laminare Strömung 10³ < Ra • f₁(Pr) < 10¹0

$$f_1(Pr) = [1 + (0.492 / Pr)^{9/16}]^{-16/9}$$

Konvektiver Wärmeübergang

Vertikale Platte

Nu =
$$(0.825 + 0.387 \cdot [Ra \cdot f_1(Pr)]^{1/6})^2$$

 $10^{-1} < Ra < 10^{12}$

$$f_1(Pr) = [1 + (0.492 / Pr)^{9/16}]^{-16/9}$$

Erzwungene Strömung

Platte

$$Nu_{lam} = 0.664 \cdot \sqrt{Re} \cdot Pr^{1/3}$$

laminare Grenzschicht Re < 5 • 10⁵ und 0.6 < Pr < 2000

$$Nu_{turb} = 0.037 \cdot Re^{0.8} \cdot Pr / [1 + 2.443 \cdot Re^{-0.1} \cdot (Pr^{2/3} - 1)]$$

turbulente Grenzschicht 5 • 10⁵ < Re < 10⁷ und 0.6 < Pr < 2000

$$Nu = \sqrt{(Nu_{lam}^2 + Nu_{turb}^2)}$$

Erzwungene Konvektion

Platte mit vorderer Stoßkante

Nu_{turb} =
$$\xi$$
/8 • Re • Pr / [1 + 12.7 • $\sqrt{(\xi/8)}$ • (Pr^{2/3} -1)]

turbulenter Strömung 5 • 10^5 < Re < 10^7 und 0.6 < Pr < 2000

 ξ = Widerstandsbeiwert der Platte mit:

$$\xi = 0.296 \cdot Re^{-0.2}$$

Erzwungene Konvektion

Strömung im Rohr

Nu_{turb} =
$$\xi$$
/8 • (Re – 1000) • Pr / [1 + 12.7 • $\sqrt{(\xi/8)}$ • (Pr^{2/3} -1)] • { 1 + (d_i / I)^{2/3} }

turbulenter Strömung 5 • 10^5 < Re < 10^7 und 0.6 < Pr < 2000

Widerstandsbeiwert des Rohres mit:

$$\xi = [1.82 \cdot \log(Re) - 1.64]^{-2}$$

l Länge des Rohres [m]

d_i Innendurchmesser [m] mit d_i/l < 1

Erzwungene Konvektion

Längsumströmtes Rohr

$$Nu_{turb} = \sqrt{(0.44 \cdot Re \cdot Pr^{0.67} + Re^{1.6} \cdot Pr^{2} / (27.03 + 66.03 \cdot Re^{-0.1} \cdot (Pr^{0.67} - 1))^{2})}$$

I charakteristische Länge in m

Erzwungene Konvektion

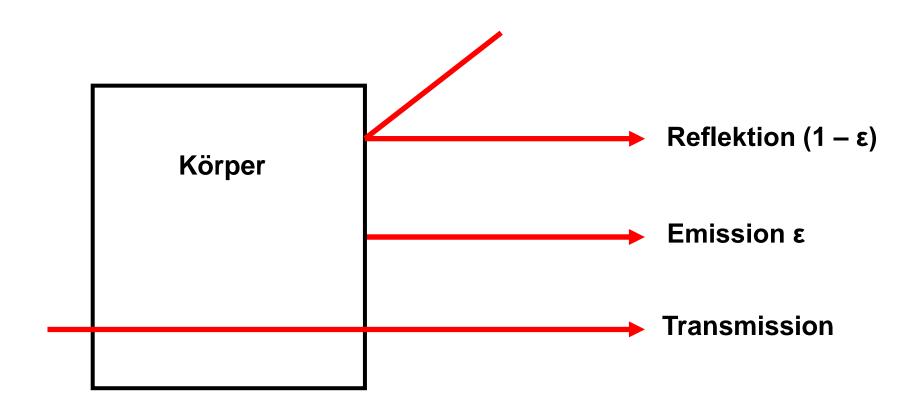
Querumströmtes Rohr

$$Nu_{turb} = 0.3 + \sqrt{(0.44 \cdot Re \cdot Pr^{0.67} + Re^{1.6} \cdot Pr^{2} / (27.03 + 66.03 \cdot Re^{-0.1} \cdot (Pr^{0.67} - 1))^{2})}$$

I = ¶ • d / 2 charakteristische Länge in m

Näherungsgleichungen

Plattenströmung


$$Nu_{l \text{ turb}} \approx 0.037 \cdot Re_{l}^{0.8} \cdot Pr$$

5 • 10⁵ < Re < 10⁷ und 0.6 < Pr < 2000

Rohrströmung

$$Nu_{d \text{ turb}} \approx 0.0235 \cdot Re_{d}^{0.8} \cdot Pr$$

 $10^4 < Re < 10^6 \text{ und } 0.6 < Pr < 2000 \text{ mit I / d > 50}$

Emissionsfaktoren

Strahlung

$$\dot{Q}_S = C_{12} \cdot A \cdot (T_1^4 - T_2^4)$$

Q_S Strahlungsleistung [W]

A Strahlungsabgebende Fläche [m²]

C₁₂ Strahlungsaustauschzahl

T absolute Temperatur

 $T_1 > T_2$ Heizung ($T_1 < T_2$ Kühlung)

Strahlung

$$C_{12} = \sigma / (1 / \epsilon_1 + 1 / \epsilon_2 - 1)$$

Parallele Platten

σ Stefan Boltzmann Konstante

$$\sigma = 5,67 \cdot 10^{-8} \text{ W} / \text{m}^2 / \text{K}^4$$

ε Emissionsverhältnis der Flächen

 $\varepsilon = E(T) / E_S(T) = Emission Körper / E. schwarzer Körper$

Strahlung

$$C_{12} = \sigma / (1 / \epsilon_1 + A_1 / A_2 \cdot [1 / \epsilon_2 - 1])$$

Mantel im Innenrohr

σ Stefan Boltzmann Konstante

$$\sigma = 5,67 \cdot 10^{-8} \text{ W} / \text{m}^2 / \text{K}^4$$

ε Emissionsverhältnis der Flächen A

Strahlung

$$C_{12} = \sigma \cdot \varepsilon_1 \cdot \varepsilon_2 \cdot \phi_{12}$$

Flächen mit Winkelbeziehung

φ₁₂ Einstrahlzahl

Strahlung

$$C_{12} \approx \sigma \cdot \varepsilon_1$$

Sonderfall bei sehr großen Umschließungsflächen

Emissionsfaktoren

- Aluminium, poliert 0,05
- Eisen blank 0,13
- Verz. Stahl 0,25
- Eisen, verrostet 0,69
- Lack ≈ 0,95 (aus Weiß)
- Beton und Ziegel 0,92
- Holz (Bretter) 0,96
- Glas 0,7 bis 0,9
- Eis 0,95
- Wasser 0,96
- menschliche Haut 0,98

Plattenwärmeübertrager

Erzwungene Konvektion

Platte mit vorderer Stoßkante

Nu_{turb} =
$$\xi / 8 \cdot \text{Re} \cdot \text{Pr} / [1 + 12.7 \cdot \sqrt{(\xi / 8)} \cdot (\text{Pr}^{2/3} - 1)]$$

turbulenter Strömung $5 \cdot 10^5 < \text{Re} < 10^7 \text{ und } 0.6 < \text{Pr} < 2000$

Widerstandsbeiwert der Platte mit:

$$\xi = 0.296 \cdot Re^{-0.2}$$

Plattenwärmeübertrager

Erzwungene Konvektion

Platte

$$Nu_{lam} = 0.664 \cdot \sqrt{Re} \cdot Pr^{1/3}$$

laminare Grenzschicht Re < 5 • 10⁵ und 0.6 < Pr < 2000

$$Nu = \sqrt{(Nu_{lam}^2 + Nu_{turb}^2)}$$

$$\alpha_{i/a} = Nu \cdot \lambda / I$$

Plattenwärmeübertrager

Erzwungene Konvektion

Platte mit vorderer Stoßkante

$$1/k = 1/\alpha_{i} + s/\lambda + 1/\alpha_{a}$$

$$R_{ges} = R_i + R_L + R_a$$

$$W_2 = m_2 \cdot c_p$$

Plattenwärmeübertrager

Erzwungene Konvektion

Platte mit vorderer Stoßkante

$$NTU = k \cdot A / W_2$$

$$\Phi = (1 - e^{(\mu - 1) \cdot NTU}) / (1 - \mu \cdot e^{(\mu - 1) \cdot NTU})$$

Gegenstromänderungsgrad

$$1/\Phi = 1/(1-e^{-NTU}) + \mu/(1-e^{-\mu\cdot NTU}) - 1/NTU$$

Kreuzstromänderungsgrad

Plattenwärmeübertrager

Zwei Plattenwärmeübertrager

Im Gegenstrom (Kreuz- / Gegenstrom)

$$\Phi_{2ges} = (\Phi_{2A} + \Phi_{2B} - (1 + \mu) \cdot \Phi_{2A} \cdot \Phi_{2B}) / (1 - \mu \cdot \Phi_{2A} \cdot \Phi_{2B})$$

Erzwungene Konvektion

Berippte Lamellenwärmeübertrager

$$Nu_d = C \cdot Re_d^{0,6} \cdot (A/A_0)^{-0.15} \cdot Pr^{1/3}$$

turbulenter Strömung 10^3 < Re < 10^5 und 0.6 < Pr < 2000

C = Anordnungsfaktoren (empirisch) mit:

C = 0,38 versetzte Anordnung (> 3 Rohrreihen)

C = 0.36 versetzte Anordnung (3 Rohrreihen)

C = 0,33 versetzte Anordnung (2 Rohrreihen)

C = 0,22 fluchtende Anordnung (> 3 Rohrreihen)

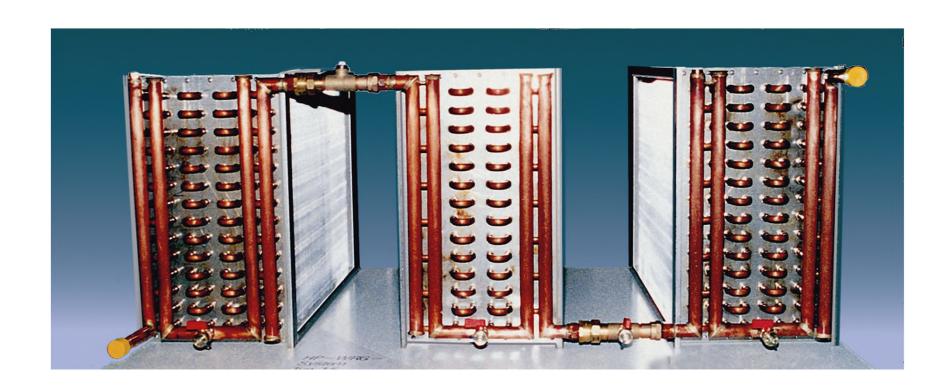
C = 0,20 fluchtende Anordnung (2 bis 3 Rohrreihen)

Umrechnung k-Zahlen nach Kaup

$$k_{korr} = k_{mess} \cdot (w_{L korr} / w_{L Mess})^{0.4} \cdot (w_{M korr} / w_{M Mess})^{0.4}$$

 $0.6 < w_{L korr} / w_{L Mess} < 1.6$ (Fehler < 4 %)
 $0.8 < w_{M korr} / w_{M Mess} < 1.4$ (Fehler < 4 %)

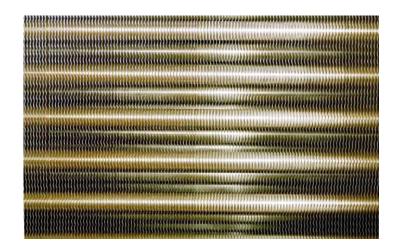
wobei:


korr Index korrigierter, bzw. umgerechneter Wert

Mess Index gemessener, bzw. originärer Wert

M Index Medienseite z. B. Wasser

L Index Luftseite



Erzwungene Konvektion

Berippte Lamellenwärmeübertrager

$$A/A_0 = 1 + 2 \cdot h \cdot (h + d + s) / t_r / d$$

A / A₀ Flächenverhältnis berippt zum Grundkörper

h Rippenhöhe

d Rohrdurchmesser (Grundkörper)

s Rippenstärke

t_r Rippenteilung

Erzwungene Konvektion

Berippte Lamellenwärmeübertrager

$$Re = w \cdot I / v$$

$$I = \P / 2 \cdot \sqrt{(d^2 + h^2)}$$

- I Charakteristische Strömungslänge
- h Rippenhöhe
- d Rohrdurchmesser (Grundkörper)

Erzwungene Konvektion

Berippte Lamellenwärmeübertrager

Rechtecklamelle

$$h = (4 \cdot s_1 \cdot s_2 / (2 \cdot s_1 + 2 \cdot s_2) - d) / 2$$

- s₁ Länge der Lamelle (pro Grundkörper)
- s₂ Breite der Lamelle (pro Grundkörper)
- d Rohrdurchmesser (Grundkörper)

Erzwungene Konvektion

Berippte Lamellenwärmeübertrager

$$\varphi = (\varphi' - 1) \cdot (1 + 0.35 \cdot \ln \varphi')$$
 [Rippenfaktor]

$$\phi' = 1.28 \cdot b_R / d \cdot \sqrt{(I_R / b_R - 0.2)}$$

[Fluchtende Anordnung]

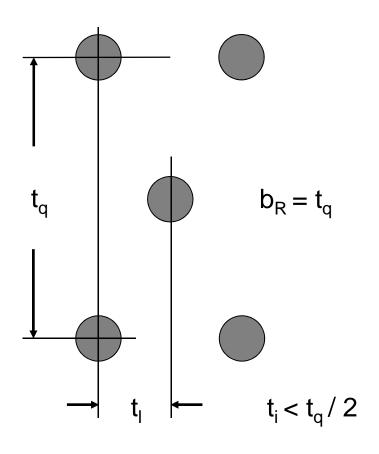
$$\phi' = 1.27 \cdot b_R / d \cdot \sqrt{(I_R / b_R - 0.3)}$$

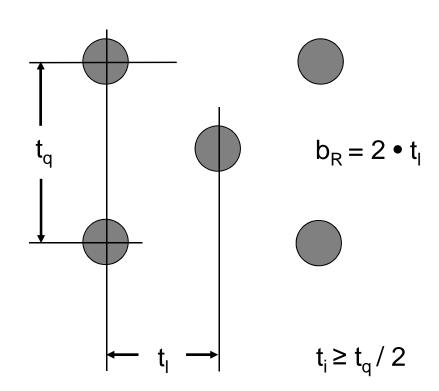
[Versetzte Anordnung]

 b_R Breite der Rippe

Länge der Rippe

 $mit I_R \ge b_R$


d Rohrdurchmesser (Grundkörper)



Erzwungene Konvektion

Versetzte Lamellenwärmeübertrager

$$I_{R} = \sqrt{(t_{l}^{2} + t_{q}^{2}/4)}$$

Erzwungene Konvektion

Berippte Lamellenwärmeübertrager

$$x = \phi \cdot d / 2 \cdot \sqrt{(2 \cdot \alpha_R / \lambda_R / s)}$$

φ • d / 2 Gewichtete Rippenhöhe

α_R Wärmeübergangskoeffizient an der Rippe

λ_R Wärmeleitfähigkeit der Rippe

s Rippenstärke

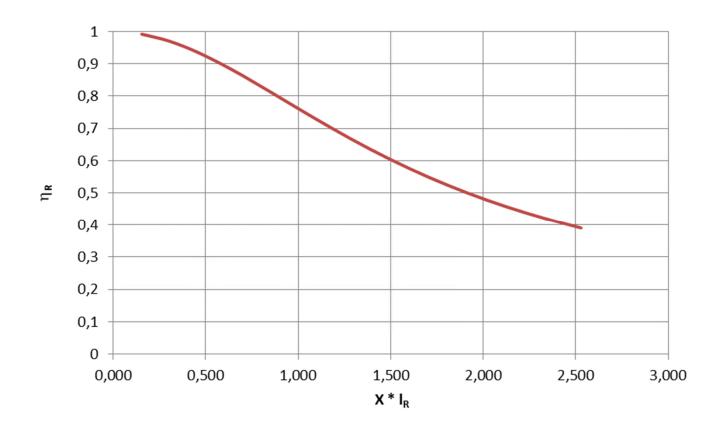
Erzwungene Konvektion

Berippte Lamellenwärmeübertrager

$$\eta_R = \tanh(x) / x = 1 / x \cdot (e^X - e^{-X}) / (e^X + e^{-X})$$

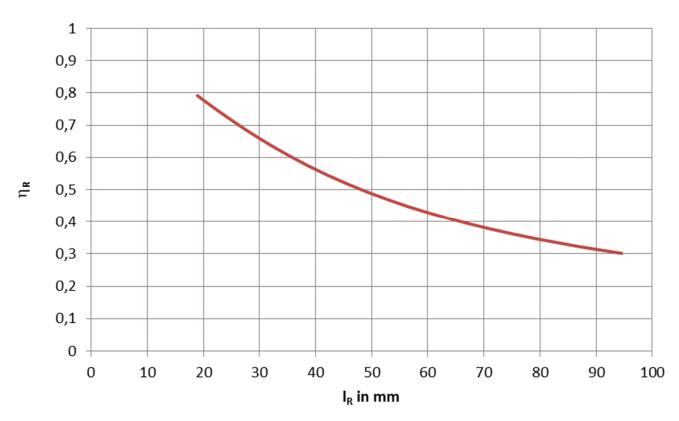
η_R Rippenwirkungsgrad

$$\dot{\mathbf{Q}} = \alpha_{\mathsf{R}} \bullet (\mathbf{A}_0 + \eta_{\mathsf{R}} \bullet \mathbf{A}_{\mathsf{R}}) \bullet (\vartheta_0 - \vartheta_{\mathsf{U}})$$


θ₀ Temperatur des Grundkörpers

θ_U Umgebungstemperatur

Erzwungene Konvektion


Berippte Lamellenwärmeübertrager

Erzwungene Konvektion

Berippte Lamellenwärmeübertrager mit im Beispiel $s_1 = s_2$ und d = 12 mm und tr = 2.5 mm (s = 0.2 mm)

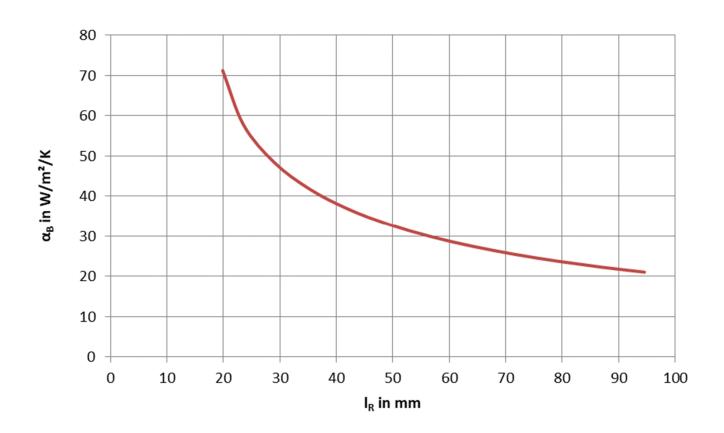
Erzwungene Konvektion

Scheinbarer Wärmeübergangskoeffizient

$$\alpha_{Sch} = \alpha \cdot (A_G / A_a + \eta_R \cdot A_R / A_a)$$

mit:

A_G Fläche des Grundkörpers (Rohr außen) in m²


A_a gesamte Oberfläche des Wärmeübertragers in m²

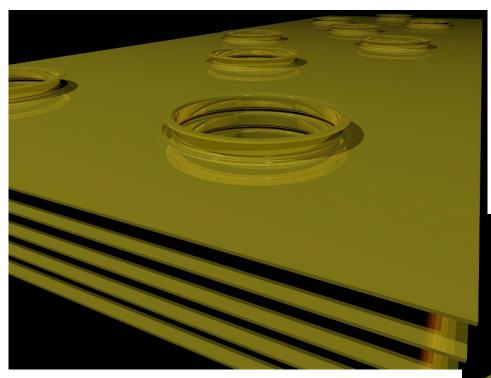
A_R Lamellenoberfläche in m²

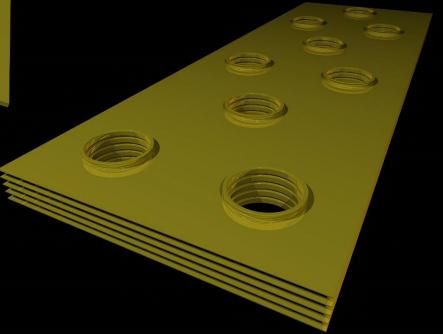
Erzwungene Konvektion

Berippte Lamellenwärmeübertrager

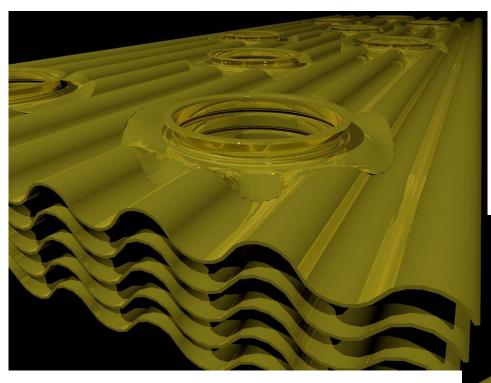
Wärmewiderstand

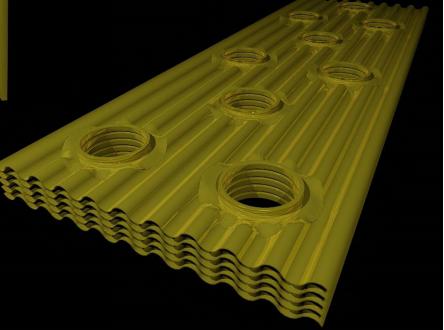
Berippte Lamellenwärmeübertrager

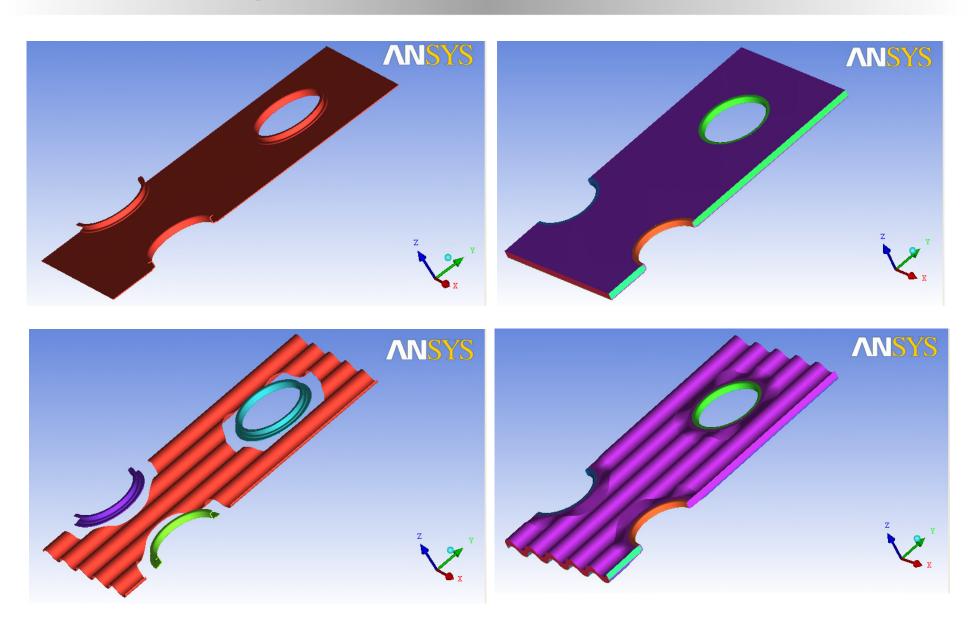

$$R = \frac{1}{k} = \frac{1}{\alpha_a} + \frac{A_a}{A_i} \cdot \left(\frac{d_a - d_i}{2 \cdot \lambda} + \frac{1}{\alpha_i}\right)$$

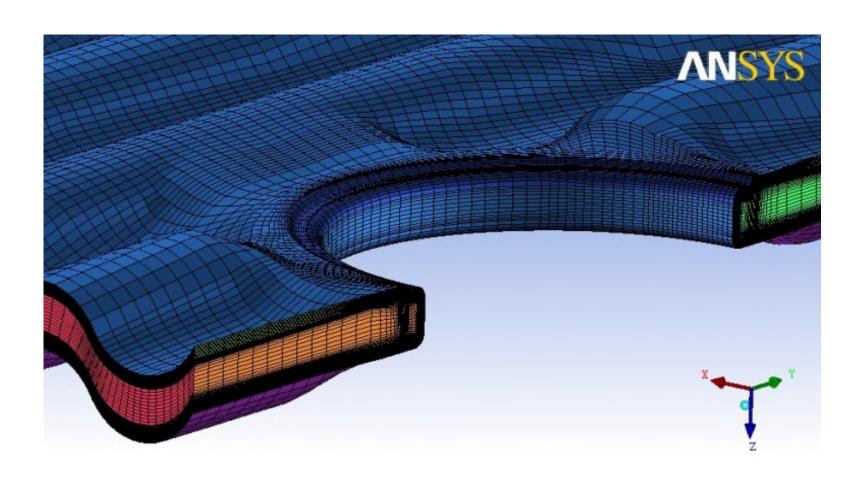

mit:

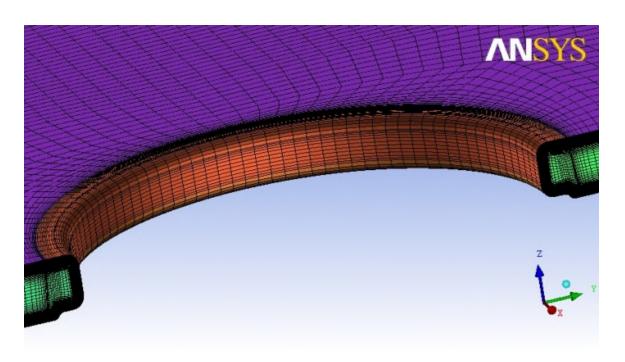
A_a äußere Oberfläche des Wärmeübertragers in m²

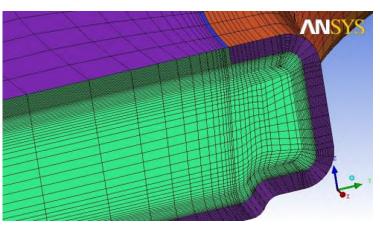

A_i innere Oberfläche des WÜ in m²

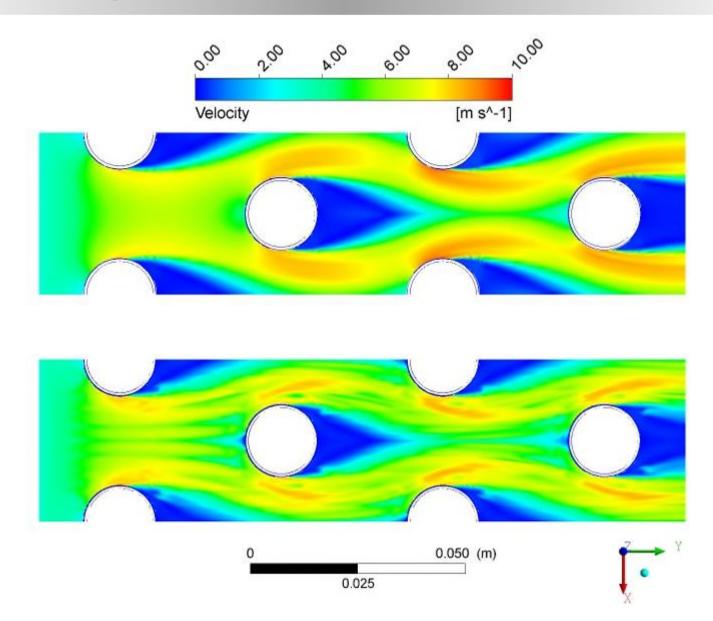


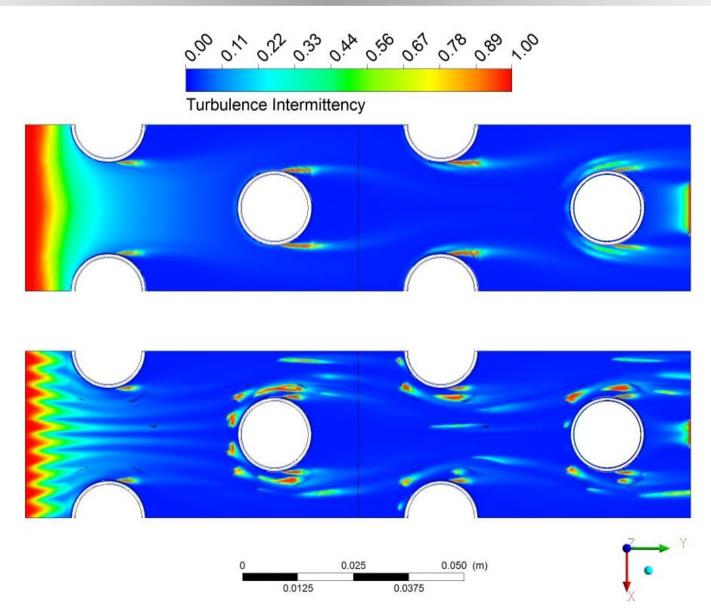


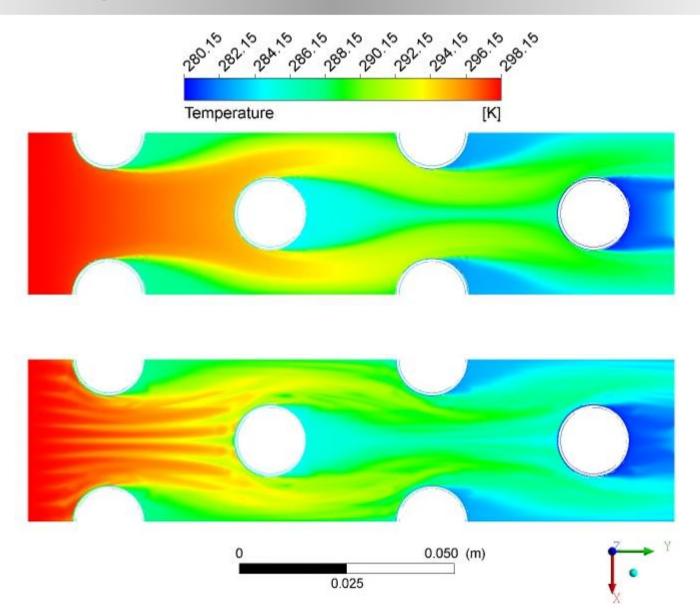


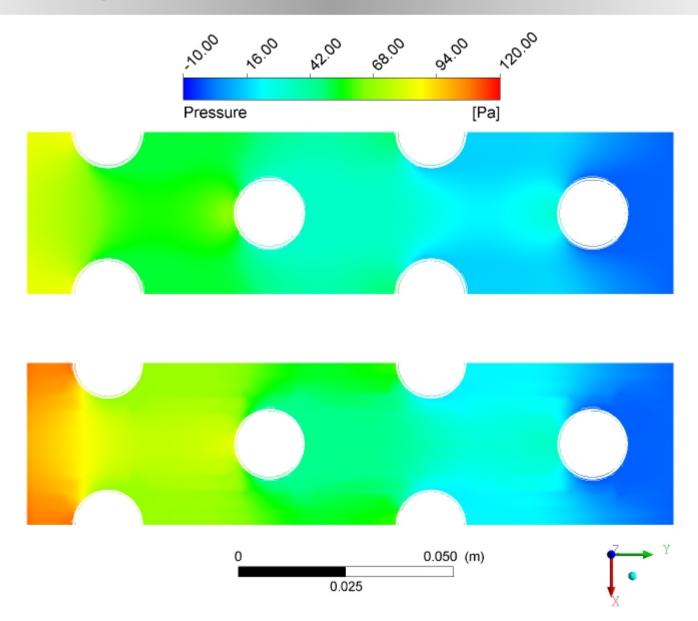


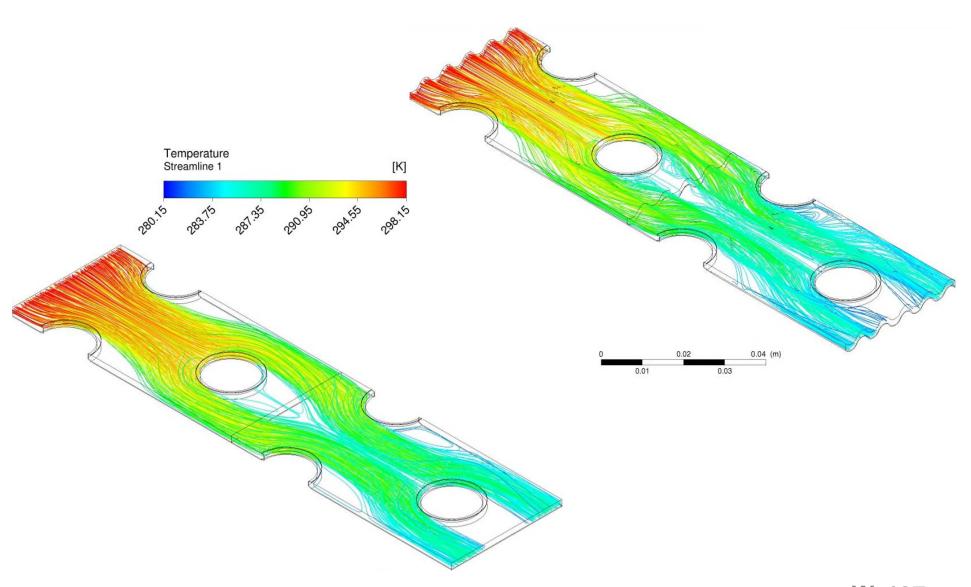


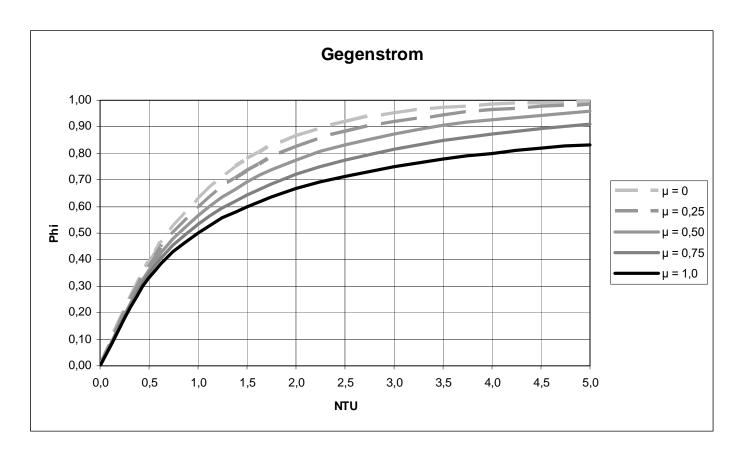

Hexaedergitters der strukturierter Lamelle











Wärmeübertragung

Übertragungsgrad im reinem Gegenstrom

$$\begin{split} \Phi_i &= (1 - e^{\left[(\mu_i - 1) \bullet NTU_i \right]}) \, / \, (1 - \mu_i \bullet e^{\left[(\mu_i - 1) \bullet NTU_i \right]}) \text{ bei } \quad \mu <> 1 \\ \Phi &= NTU \, / \, (1 + NTU) \end{split}$$

Entwicklungsergebnisse CFD

Ergebnisse der CFD - Simulation

• Q "strukturiert" gegenüber Q "konv."

+ 12,7 %

NTU "strukturiert" gegenüber NTU "konv." + 29,7 %

ΔP "strukturiert" gegenüber ΔP "konv."

+ 27,8 %

W 139

Entwicklungsergebnisse CFD

Ergebnisse der Messung

• Q "strukturiert" gegenüber Q "konv."

+ 12,0 %

• NTU "strukturiert" gegenüber NTU "konv." + 27,0 %

ΔP "strukturiert" gegenüber ΔP "konv."

+- 0,0 %

Entwicklungsergebnisse Messung Wumwelt-Campus Birkenfeld

Messung HTL Luzern 1998				Messung TÜV Süd 2012					
konv. Lamelle*				strukturierte Lamelle*					
LA 2,5 mm				LA 2,7 mm					
w m/s	Φ	ΔP Pa	NTU "konv."	Φ	ΔP Pa	NTU NTU Faktor ΔP "Struktur" Faktor			
1,5	0,77	166	3,348	0,79	124	3,673	1,10	0,75	
2,5	0,72	364	2,571	0,76	277	3,167	1,23	0,76	
3,5	0,70	619	2,333	0,73	480	2,759	1,18	0,77	

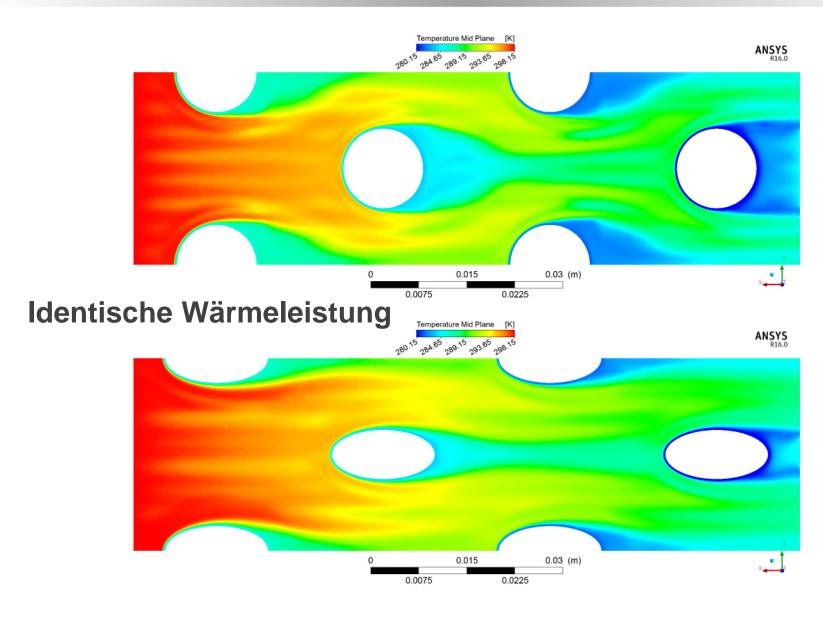
^{*} Systeme geometrisch baugleich (Rohrreihen, Rohrabstände, Lamellendicke, etc. identisch) Messungen nach EN 308

Entwicklungsergebnisse Messung Wumwelt-Campus Birkenfeld

Messung	HTL	Luzern	1998
---------	-----	--------	------

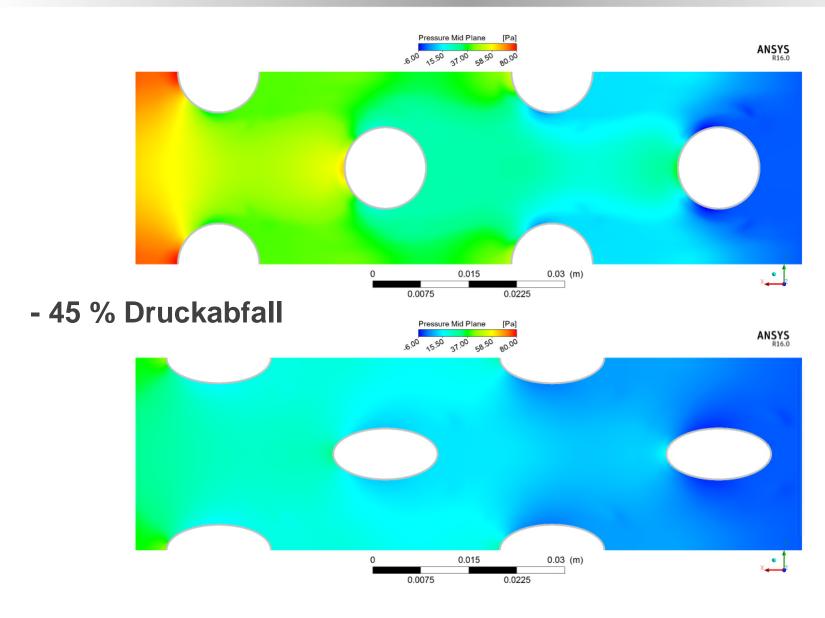
Messung *TÜV Süd* 2012

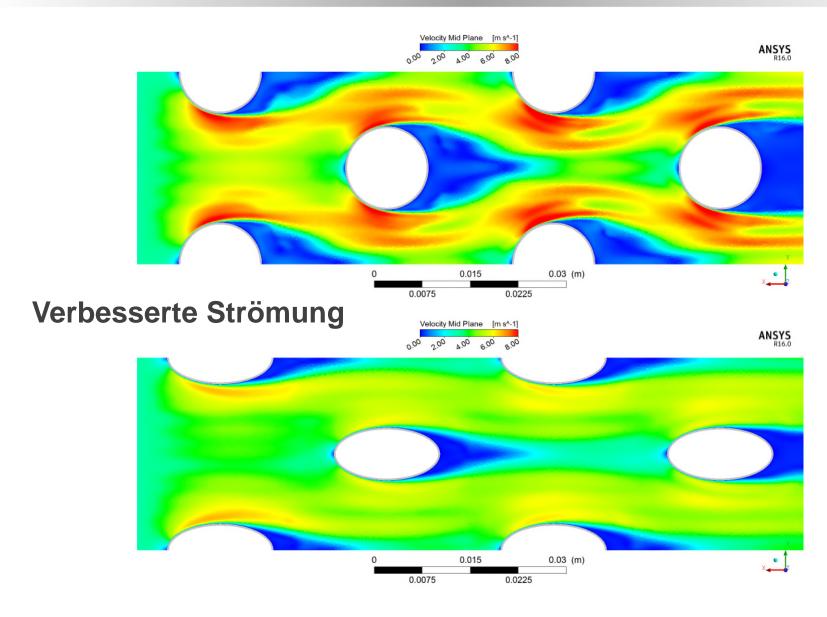
konv. Lamelle* LA 2,5 mm


strukturierte Lamelle* umgerechnet auf LA 2,5 mm

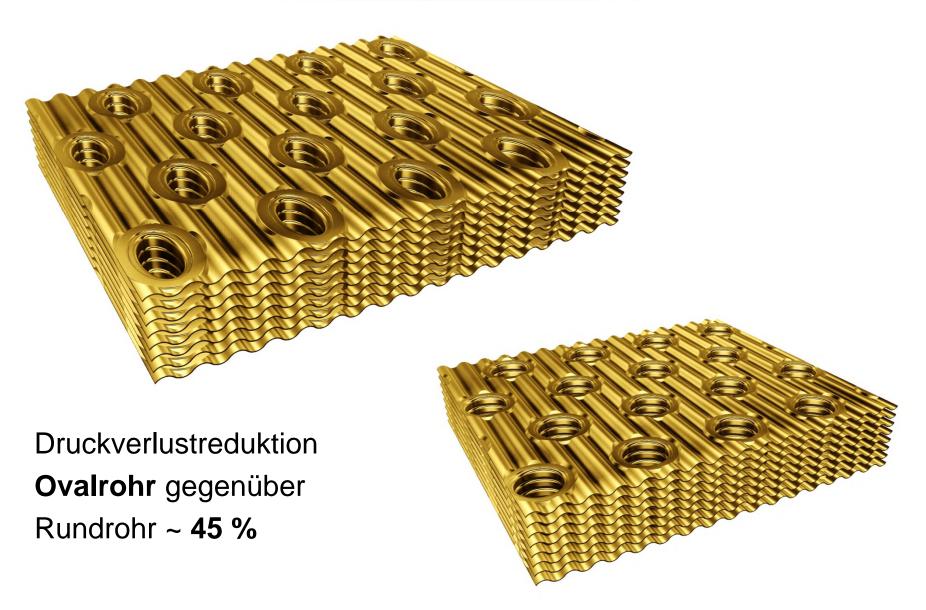
W	Φ	ΔΡ	NTU	Ф	ΔΡ	NTU	NTU	Faktor ∆P
m/s		Pa	"konv."		Pa	"Struktur"	Fakto	ſ
1,5	0,77	166	3,348	0,80	140	3,967	1,18	0,84
2,5	0,72	364	2,571	0,77	313	3,420	1,33	0,86
3,5	0,70	619	2,333	0,75	543	2,980	1,28	0,88

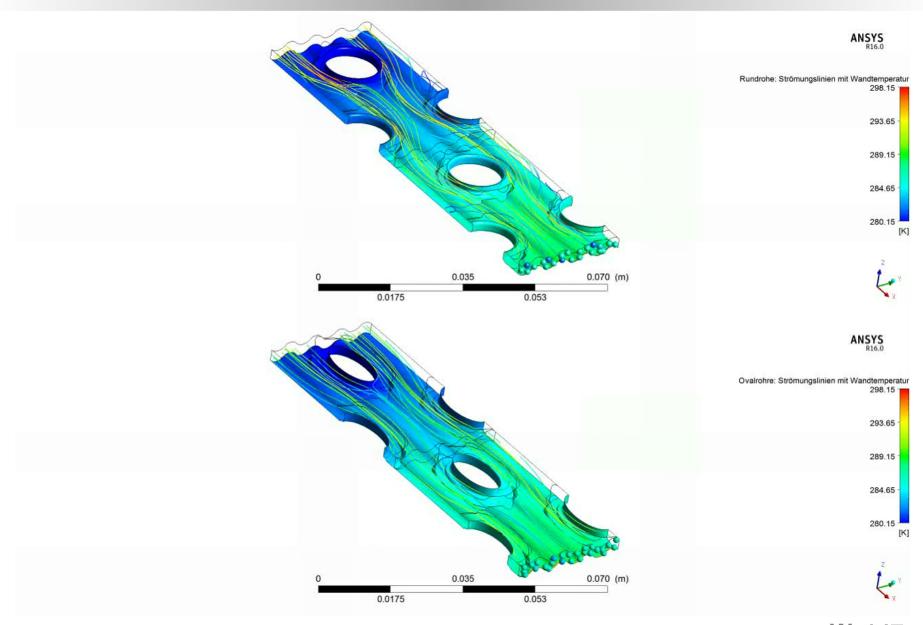
^{*} Systeme geometrisch baugleich (Rohrreihen, Rohrabstände, Lamellendicke, etc. identisch) Messungen nach EN 308

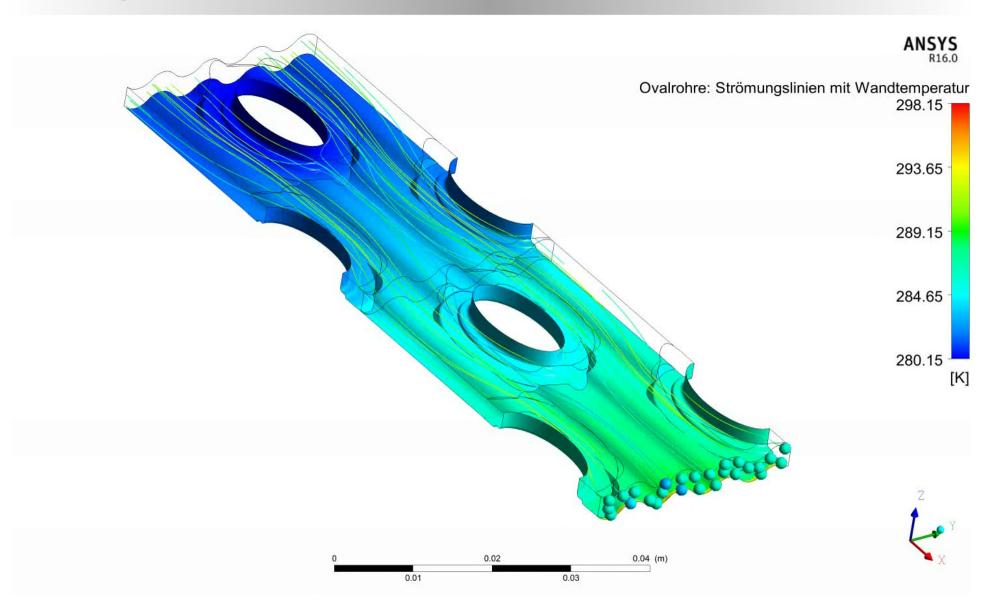

Vergleich Ovalrohr



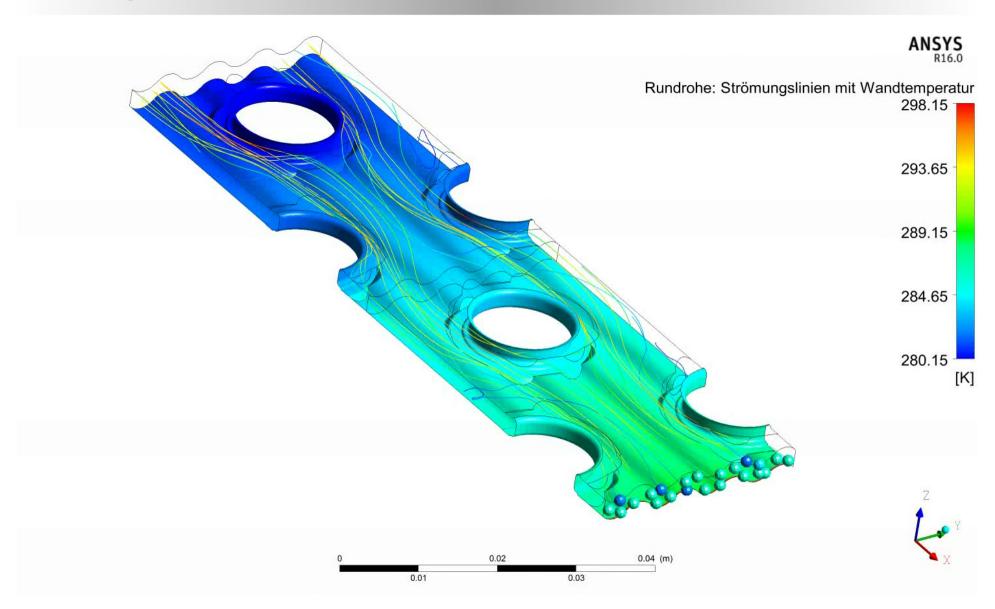
Vergleich Ovalrohr





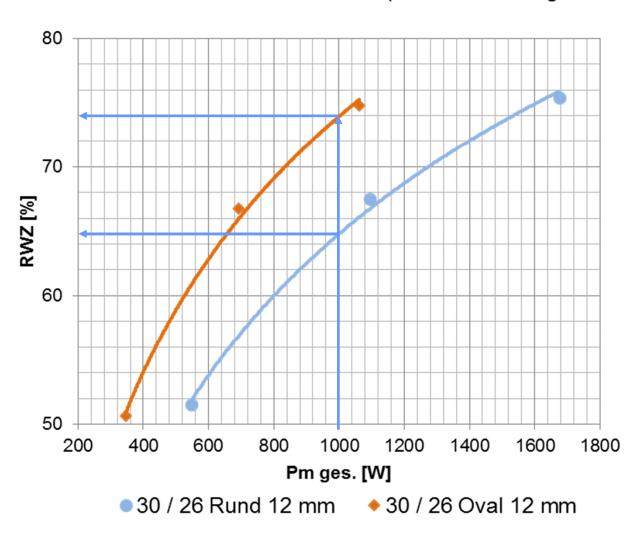


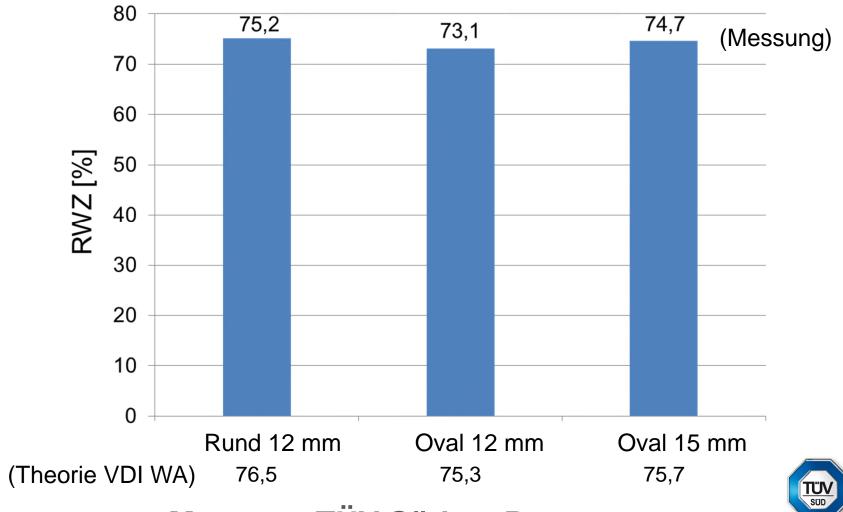




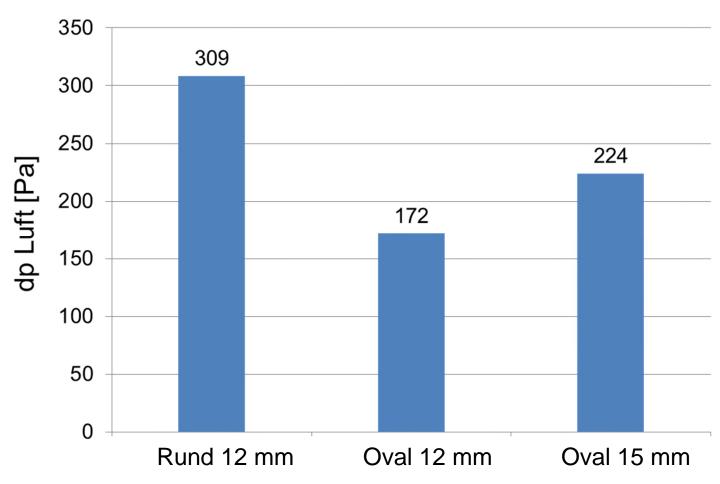
Vergleich Rundrohr

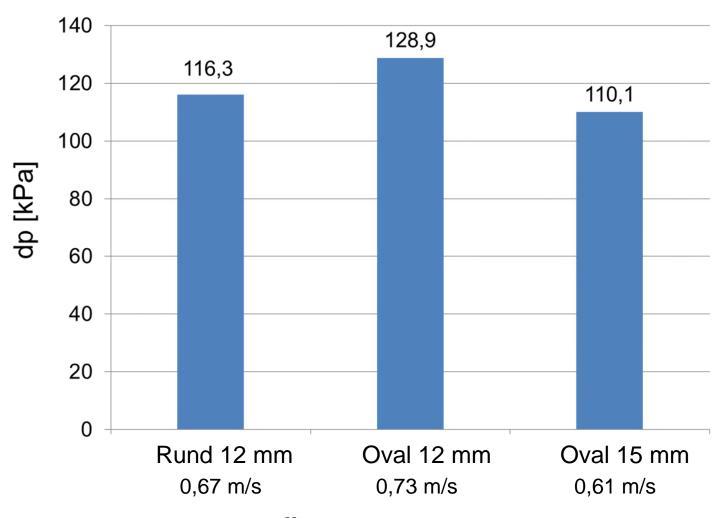
Ovalrohrtechnologie


Nutzen über Aufwand (über NTU umgerechnet)

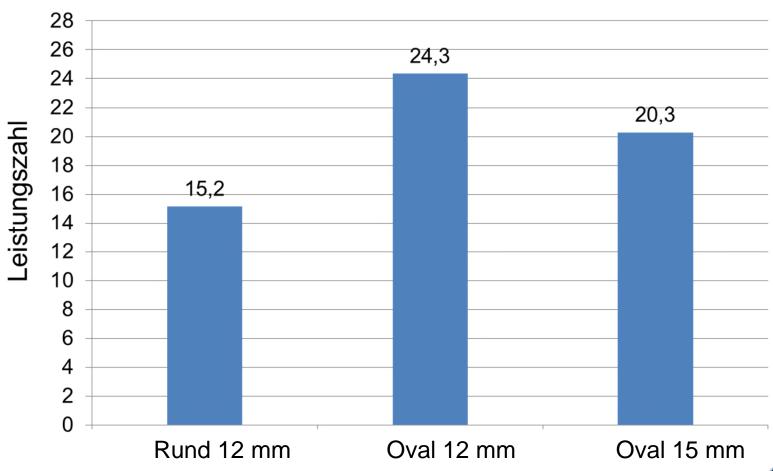

Ovalrohrtechnologie

Nutzen über Aufwand (über NTU umgerechnet)





Messung TÜV Süd an Baumustern



Messung TÜV Süd an Baumustern

Raumlufttechnik Wärmeübertragung

Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik

Prof. Dr.-Ing. Dr. Christoph Kaup

c.kaup@umwelt-campus.de

