
Willkommen

Raumlufttechnik hx-Diagramm

Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik

Dipl.-Ing. Christian Backes backes@howatherm.de

Prof. Dr.-Ing. **Christoph Kaup** c.kaup@umwelt-campus.de

Thermodynamische Grundlagen

Luft

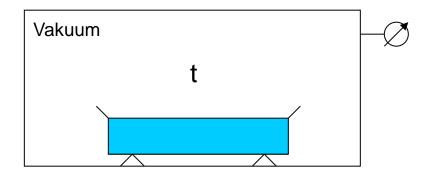
Trockene Luft

Gemisch von Gasen:

- Stickstoff $N^2 \sim 78 \%$

SauerstoffO²~ 21 %

Edelgase ~ 1 %

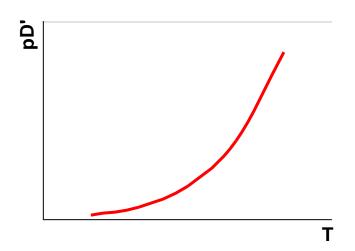

Feuchte Luft

trockene Luft + Wasserdampf

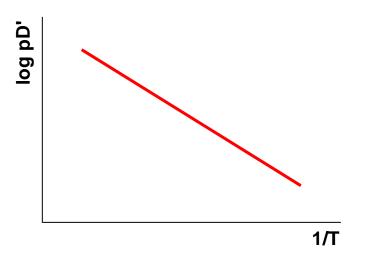
Konzentrationsmaße

Wasserdampfdruck p_D⁴

Druck des reinen Wasserdampfes auf seine Gefäßwandungen


Höchster Dampf-Druck, der sich bei einer bestimmten Temperatur einstellen kann.

$$p_D' = f(T)$$
 (vgl. Dampftafel)



Konzentrationsmaße

Wasserdampfdruck p_D⁴

Der Dampfdruck steigt exponentiell mit der Temperatur an.

Empirische Berechung

 $p_D' = 10^{(9,333 - 2334,895 / T)}$ [mbar]

Konzentrationsmaße

Die folgenden Gleichungen $p_{D,S} = f(t)$ sind aus Glück, Bernd: Zustands- und Stoffwerte, VEB Verlag für Bauwesen, Berlin, 2. Auflage, 1991 übernommen.

$$p_{D,S} = 611 \ \text{exp} \ (\text{-} \ 4,909965 \cdot 10^{\text{-}4} + 0,08183197 \ \text{t} - 5,552967 \cdot 10^{\text{-}4} \ \text{t}^2 - 2,228376 \cdot 10^{\text{-}5} \ \text{t}^3 - 6,211808 \cdot 10^{\text{-}7} \ \text{t}^4) \quad \text{[Pa]}$$

$$(\text{Geltungsbereich: -20 °C} \le t < 0,01 °C \ , \ \text{max. Fehler: 0,02\%})$$

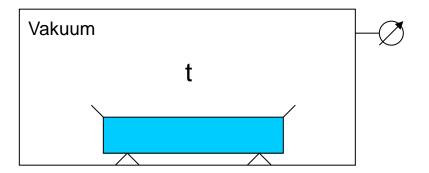
 $p_{D,S} = 611 \text{ exp } (-1,91275 \cdot 10^{-4} + 7,258 \cdot 10^{-2} \text{ t} -2,939 \cdot 10 - 4 \text{ t}^2 + 9,841 \cdot 10^{-7} \text{ t}^3 - 1,92 \cdot 10^{-9} \text{ t}^4)$ [Pa] (Geltungsbereich: $0,01 \text{ °C} \le t < 100 \text{ °C}$, max. Fehler: 0,02%)

$$p_{D,S} = 611 \ \text{exp} \ (\ 6 \cdot 10^{-5} + 7,13274 \cdot 10^{-2} \ \text{t} - 2,581631 \cdot 10^{-4} \ \text{t}^2 + 6,311955 \cdot 10^{-7} \ \text{t}^3 - 7,167112 \cdot 10^{-10} \ \text{t}^4) \quad \text{[Pa]}$$
 (Geltungsbereich: $100 \ ^{\circ}\text{C} \le t < 200 \ ^{\circ}\text{C}$, max. Fehler: $0,02\%$)

Konzentrationsmaße

Die Sättigungstemperatur $t_s = f(p_{D,S})$ berechnet sich dann umgedreht nach Glück aus:

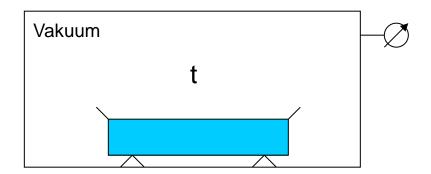
$$t_{\rm S} = -61,125785 + 8,1386 \; (\ln \, \rm p_{D,S}) - 7,422003 \cdot 10 - 2 \; (\ln \, \rm p_{D,S})^2 + 6,283721 \cdot 10^{-2} \; (\ln \, \rm p_{D,S})^3 - 2,7237063 \; (\ln \, \rm p_{D,S})^4 \quad [^{\circ}C]$$
 (Geltungsbereich: 103 Pa < $p_{D,S} \le 611,2$ Pa , max. Fehler: 0,13%)


 $t_S = -63,16113 + 5,36859 (ln p_{D.S}) + 0,973587 (ln p_{D.S})^2 - 7,38636 \cdot 10^{-2} (ln p_{D.S})^3 + 4,81832 (ln p_{D.S})^4$ [°C] (Geltungsbereich: 611,2 Pa < pD,S ≤ 101320 Pa, max. Fehler: 0,41%)

$$t_S = -228,146 + 31,97037 (ln p_{D,S}) + 1,153295 (ln p_{D,S})^2 - 0,27847109 (ln p_{D,S})^3 + 1,319026 \cdot 10^{-2} (ln p_{D,S})^4 [°C]$$
 (Geltungsbereich: 101320 Pa < $p_{D,S} \le 1555100$ Pa, max. Fehler: 0,05%)

Konzentrationsmaße

Wasserdampfdruck p_D⁴


Bei der größtmöglichen Dampfmenge (Sättigung) ist der Wasserdampfdruck gleich dem Siededruck der entsprechenden Temperatur

Temperatur [°C]	Dampfdruck p _D ' [bar]
20	0,02337
40	0,07375
60	0,19920
80	0,47360
100	1,01330

Konzentrationsmaße

Wasserdampfdruck p_D⁴

<u>Übung</u>
Wie groß ist die max.
mögliche Dampfmenge m_D bei $V = 30 \text{ m}^3 \text{ und einer}$ Raumtemperatur von 20 °C?

Ideale Gasgleichung:

$$p \cdot V = m \cdot R \cdot T$$

 $m_D = p_D \cdot V / (R_D \cdot T)$

Gas	Gaskonstante R [J / kg / K]
Wasser	461,40

Konzentrationsmaße

$$m_{D} = p_{D} \cdot V / (R_{D} \cdot T)$$

$$= 2.337 \cdot 30 / (461,4 \cdot 293,16)$$

$$= \frac{M \cdot m^{3} \cdot kg \cdot K}{m^{2} \cdot J \cdot Mm \cdot K}$$

$$= 0,518 kg$$

$$\rightarrow \rho = m / V = p / R \cdot t$$

$$= 0,518 / 30 \cdot 1.000$$

$$= 17,3 g_{D}/m^{3}$$

Konzentrationsmaße

Dichte der trockenen Luft $\rho_{tr,L}$

$$p \cdot V = m \cdot R \cdot T$$

 $\rho = m / V = p / (R \cdot T) [kg/m^3]$

Gas	Gaskonstante R [J / kg / K]
tr. Luft	287,10

Dichte der trockenen Luft (Meereshöhe, 0 °C)

$$\rho_{tr.L} = 101.325 / (287,1 \cdot 273,15) = 1,292 \text{ kg/m}^3$$

Dichte der trockenen Luft (Meereshöhe, 20 °C)

$$\rho_{tr.L} = 101.325 / (287,1 \cdot 293,15) = 1,204 \text{ kg/m}^3$$

Konzentrationsmaße

Dichte der feuchten Luft ρ_{fL}

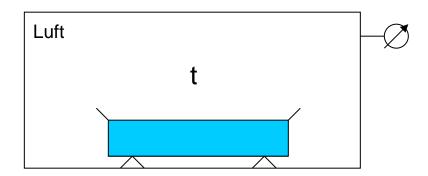
$$\rho = m / V = p / (R \cdot T) [kg/m^3]$$

Übung (Meereshöhe, 20°C)

$$\rho_D = 101.325 / (461,4 \cdot 293,15) = 0,749 \text{ kg/m}^3$$

$$m_D = 0.518 \text{ kg}_D \text{ (aus Übung)}$$

$$V_D = m_D / \rho_D = 0.518 / 0.749 = 0.691 \text{ m}^3 \text{ (aus Übung)}$$


$$V_{tr,L} = 1 - 0,691 = 0,309 \text{ m}^3$$

$$\rho_{fL} = m_{tr.L} + m_D = 0.309 \cdot 1.204 + 0.691 \cdot 0.749 = \mathbf{0.8896} \text{ kg/m}^3$$

Konzentrationsmaße

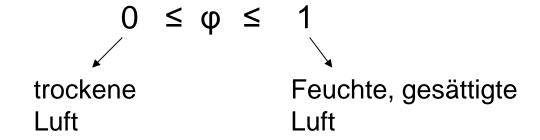
Partialdruck Wasserdampf p_D

wenn neben dem Wasserdampf auch noch Luft vorhanden ist

$$p_{ges} = p_{trockene \ Luft} + p_D$$

(p_D von 0 bis p_D', je nach relativer Feuchte)

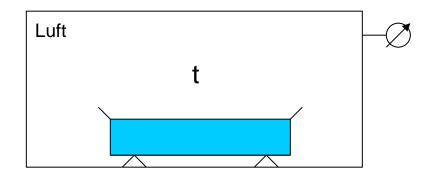
Übung


Wie ist das Verhältnis des Partialdrucks des Wasserdampfes p_D , zum Luftdruck bei $t = 20 \, ^{\circ}C$?

Konzentrationsmaße

<u>relative</u> Luftfeuchte φ

$$\varphi = p_D / p_D'$$
 = $\frac{\text{Partialdruck Wasserdampf}}{\text{Sättigungsdruck (Dampfdruck)}}$



Beschreibt das prozentuale Verhältnis zwischen dem tatsächlichen und dem maximal möglichen Wassergehalt der Luft (Sättigung).

Konzentrationsmaße

Partialdruck Wasserdampf p_D

wenn neben dem Wasserdampf auch noch Luft vorhanden ist.

$$p_{ges} = p_{trockene \ Luft} + p_D$$

(p_D von 0 bis p_D', je nach relativer Feuchte)

$$p_{ges} = p_{trockene\ Luft} + p_D \phi \cdot p_D$$

Konzentrationsmaße

absoluter Feuchtegehalt x

$$m_{\text{feuchte Luft (fL)}} = m_{\text{trockene Luft (tr.L)}} + m_{\text{D}}$$

$$m_{fL} / m_{tr.L} = 1 + m_D / m_{tr.L}$$

$$x = m_D / m_{tr.L}$$

$$m_{fL} = m_{tr.L} \cdot (1 + x)$$

Kennzeichnet den absoluten Feuchtegehalt der Luft.

Konzentrationsmaße

Zusammenhang zwischen x und φ

$$x = m_{D} / m_{tr.L} = \frac{p_{D} \cdot \cancel{N} \cdot R_{tr.L} \cdot \cancel{T}}{R_{D} \cdot \cancel{T} \cdot p_{tr.L} \cdot \cancel{N}} = \frac{R_{tr.L} \cdot p_{D}}{R_{D} \cdot p_{tr.L}}$$

$$= \frac{R_{tr.L}}{R_{D}} \cdot \frac{p_{D}}{p_{tr.L}} \cdot \frac{\varphi \cdot p_{D}'}{p_{ges} - \varphi \cdot p_{D}'}$$

$$\frac{287,10}{461,40} \cdot \frac{\varphi \cdot p_{D}'}{p_{ges} - \varphi \cdot p_{D}'}$$

$$x = 0,622 \cdot \frac{\varphi \cdot p_{D}'}{p_{ges} - \varphi \cdot p_{D}'}$$

Konzentrationsmaße

Enthalpie der feuchten Luft h

$$\dot{Q} = \dot{m} \cdot c \cdot \Delta t = \dot{m} \cdot \Delta h \left[\frac{kg}{s} \cdot \frac{KJ}{(kg \cdot K)} \cdot \frac{K}{s} = \frac{kJ}{s} = \frac{kW}{s} \right]$$

$$\dot{Q}_{\text{feuchte Luft (fL)}} = \dot{Q}_{\text{trockene Luft (tr.L)}} + \dot{Q}_{\text{D}}$$

Bezug = 0° C H₂O verdampft bei 0° C = t_1 Dampf ist von t_1 auf t_2 erhitzt

$$\dot{Q}_{fL(1-2)} = \dot{m}_{tr.L} \cdot c_{ptr.L} \cdot (t_2 - t_1) + r_D \cdot \dot{m}_D + \dot{m}_D \cdot c_{pD} \cdot (t_2 - t_1)$$
 [/ $\dot{m}_{tr.L}$]

$$\frac{(H_2 - H_1)_{fL}}{\dot{m}_{tr,L}} = c_{ptr,L} \cdot (t_2 - t_1) + \frac{\dot{m}_D}{\dot{m}_{tr,L}} \cdot [r_D + c_{pD} \cdot (t_2 - t_1)]$$

Konzentrationsmaße

Enthalpie der feuchten Luft h

$$\frac{(H_2 - H_1)_{fL}}{\dot{m}_{tr.L}} = c_{ptr.L} \cdot (t_2 - t_1) + \frac{\dot{m}_D}{\dot{m}_{tr.L}} \cdot [r_D + c_{pD} \cdot (t_2 - t_1)]$$

Bezug = 1 kg trockene Luft

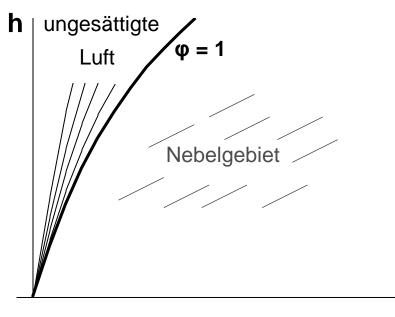
$$(h_2 - h_1)_{fL} = c_{ptr.L} \cdot (t_2 - t_1) + x \cdot [r_D + c_{pD} \cdot (t_2 - t_1)]$$

Bezug = Tripelpunkt der Wassers mit t_1 und $h_1 = 0$

$$h_{2fL} = c_{ptr.L} \cdot t_2 + x \cdot (r_{D(0^{\circ}C)} + c_{pD} \cdot t_2)$$

$$h_{fL} = c_{ptr.L} \cdot t_2 + x \cdot (r_{D(0^{\circ}C)} + c_{pD} \cdot t_2)$$

Konzentrationsmaße


Enthalpie der feuchten Luft h

$$h_{fL} = c_{ptr.L} \cdot t + x \cdot (r_{D(0^{\circ}C)} + c_{pD} \cdot t_{2})$$

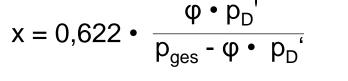
mit: $c_{p \ Luft} = 1.006 \ kJ/kg/K$
 $c_{p \ Dampf} = 1,86 \ kJ/kg/K$
 $r_{D(0^{\circ}C)} = 2.502 \ kJ/kg$
 $h_{fL} = 1,006 \cdot t + x \cdot (1,86 \cdot t + 2.502)$

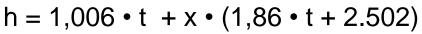
h-x Diagramm

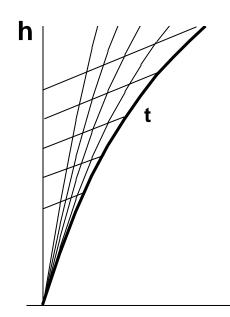
Relative Feuchte

$$x = 0.622 \cdot \frac{\phi \cdot p_{D}'}{p_{ges} - \phi \cdot p_{D}'}$$

$$h = 1,006 \cdot t + x \cdot (1,86 \cdot t + 2.502)$$


© Dipl.-Ing. Christian Backes


X



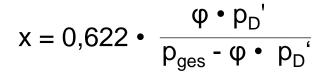
h-x Diagramm

Temperatur:

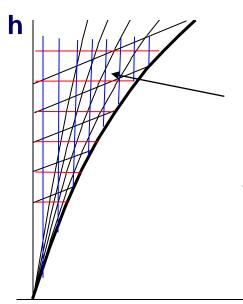
Steigung der Isothermen:

$$x = 0 \rightarrow h = 1,006 \cdot t$$

$$x \neq 0 \rightarrow h = 1,006 \cdot t + x \cdot (1,86 \cdot t + 2.502)$$


$$(dh / dx)_{t = konst.} = 1,86 \cdot t + 2.502$$

$$= c_{pD} \cdot t + r_{D} = h_{D}$$

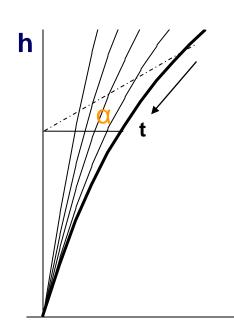


h-x Diagramm

absolute Feuchte, Enthalpie:

$$h = 1,006 \cdot t + x \cdot (1,86 \cdot t + 2.502)$$

Der Anwendungsbereich der gesättigten Luft ist sehr klein:


 \rightarrow Drehung um Winkel $\alpha = r_D = 2.502 \text{ kJ/kg}$

X

h-x Diagramm

nach Richard Mollier (1923)

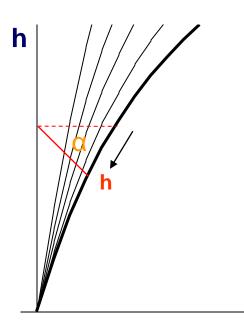
$$x = 0.622 \cdot \frac{\phi \cdot p_D}{p_{ges} - \phi \cdot p_D}$$

 $h = 1,006 \cdot t + x \cdot (1,86 \cdot t + 2.502)$

Steigung der Isothermen

(Drehung um $\alpha = r_D$):

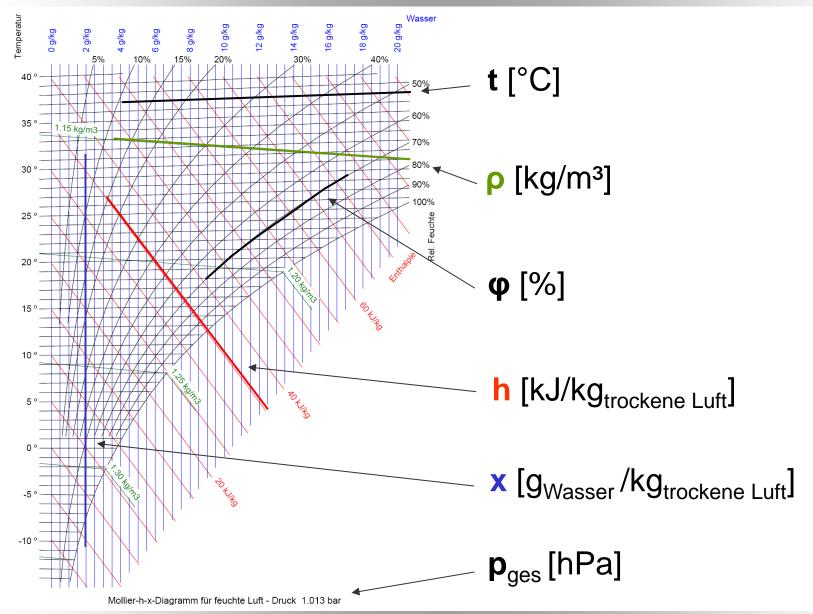
$$x \neq 0 \rightarrow h = 1,006 \cdot t + x \cdot (1,86 \cdot t + 2.502)$$


$$(dh/dx)_{t = konst.} = 1.86 \cdot t + 2.502$$

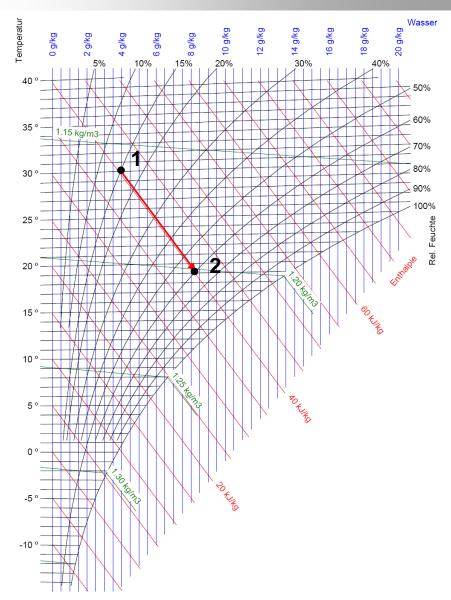
(~waagerecht)

X

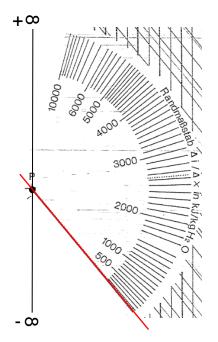
nach Mollier


$$x = 0.622 \cdot \frac{\phi \cdot p_D'}{p_{ges} - \phi \cdot p_D'}$$

$$h = 1,006 \cdot t + x \cdot (1,86 \cdot t + 2.502)$$

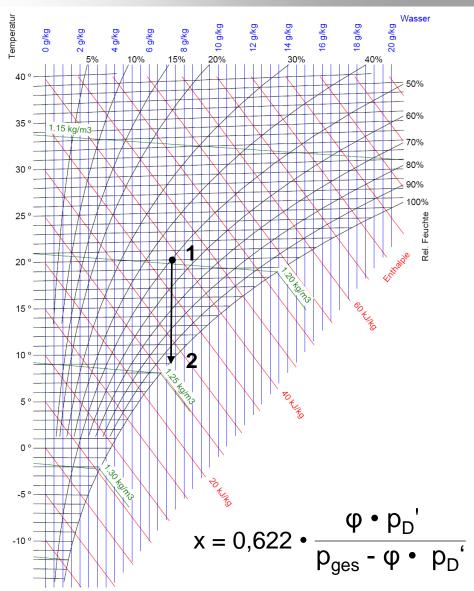

Steigung der Isenthalpen

(Drehung um $\alpha = r_D$):



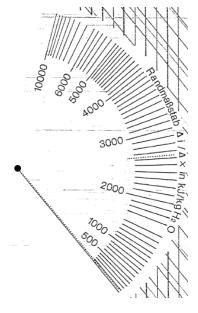
Randmaßstab ∆h/∆x

beschreibt die Richtung einer Zustandsänderung im h-x Diagramm.



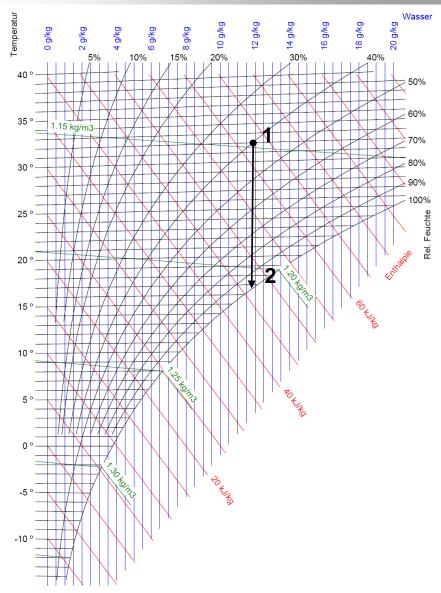
Beispiel:

 $\Delta h / \Delta x = 0$


h = konstant Isenthalpe Zustandsänderung von 1 → 2

Taupunkt

beschreibt den Zustand gesättigter Luft ($\phi = 100\%$)



Beispiel:

Luft₁ $t = 20 \, ^{\circ}\text{C} / \phi = 50 \, \%$ kühlt auf Taupunkt-temperatur ab.

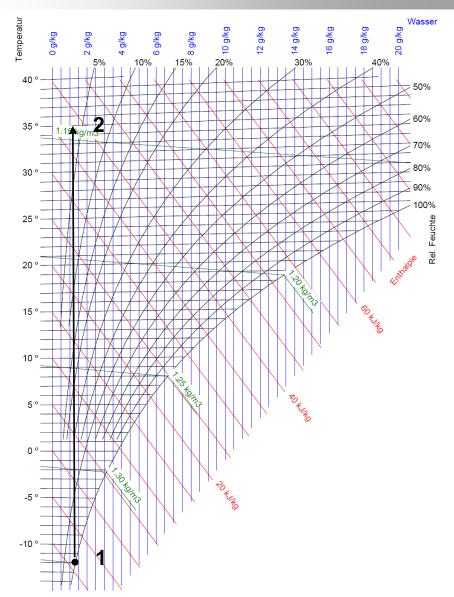
$$\Delta x = 0$$

 $\Delta h / \Delta x = \infty$
 $x_1 = 7.25 \text{ g/kg}$
 $t_2 = 9.3 \text{ °C}$

Taupunkt

beschreibt den Zustand gesättigter Luft ($\phi = 100 \%$)

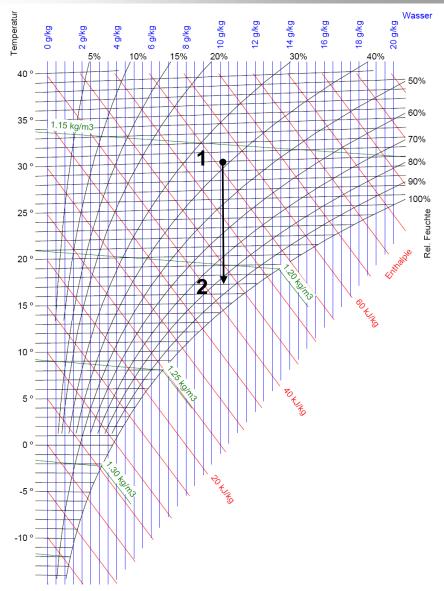
<u>Übung:</u>


10.000 m³/h Luft kühlen von $t = 32 \, ^{\circ}\text{C} / \phi = 40 \, \%$ (Normsommer; $b_o = 1.013 \, \text{mbar}$) auf Taupunkttemperatur ab. Berechnung der erforderlichen Kühlleistung Q_K ?

Lösung:

- 1) $p_{D'(32^{\circ}C)} = 10^{(9,333 2334,895 / T)} = 48,01 \text{ mbar}$
- 2) $x_{(32^{\circ}C)} = 0.622 \cdot (0.4 \cdot 48.01 / (1.013 0.4 \cdot 48.01) = 12.02 \text{ g/kg}$
- 3) $x / 0.622 = p_D' \cdot (1.013 p_D')$ $p_{D' Taup.} = 1.013 / (0.622 / x + 1) = 19.17 \text{ mbar}$
- 4) $p_D' = 10 \cdot (9,333 2.334,895 / T)$ $log (19,17) = 9,333 - (2.334,895 / T) \rightarrow t_2 = 16,89 °C$
- 5) $\rho_1 \sim p / (R \cdot T_1) = 101.300 / (287,2 \cdot 305,15) = 1,156 \text{ kg/m}^3$
- 6) $h_1 = 1,006 \cdot 32 + 12 / 1.000 \cdot (1,86 \cdot 32 + 2.502) = 62,9 \text{ kJ/kg}$
- 7) $h_2 = 1,006 \cdot 16,9 + 12 / 1.000 \cdot (1,86 \cdot 16,9 + 2.502) = 47,4 \text{ kJ/kg}$
- 8) $\dot{Q}_{K} = \dot{m} \cdot \Delta h = 10.000 / 3.600 \cdot 1,156 \cdot (62,9 47,4) = 49,8 \text{ kW}$

Erwärmung bei x = konstant


"Erhitzer"

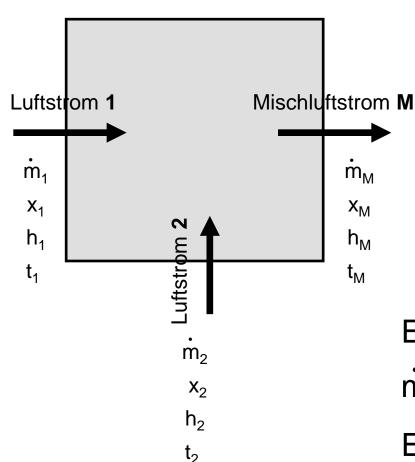
Beispiel:

Erwärmung von $t_1 = -12 \,^{\circ}\text{C} / 100 \,^{\circ}\text{M}$ (Normwinter Hermeskeil) auf $t_2 = 35 \,^{\circ}\text{C}$

$$\dot{Q}_{1/2} = (h_2 - h_1) \cdot \dot{m}_{tr.L}$$

 $\dot{Q}_{1/2} = (t_2 - t_1) \cdot \dot{m}_{tr.L} \cdot c_{ptr.L}$

Kühlung bei x = konstant


"trockener Kühler"

Beispiel:

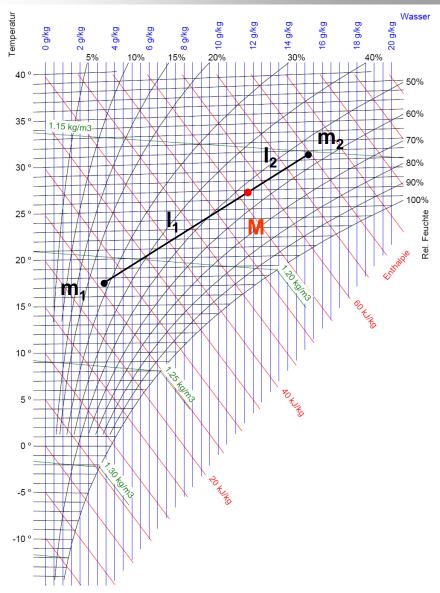
Kühlung von $t_1 = 30 \,^{\circ}\text{C} / x = 10 \,\text{g/kg}$ auf $t_2 = 17 \,^{\circ}\text{C}$

$$\begin{aligned} \dot{Q}_{1/2} &= (h_2 - h_1) \cdot \dot{m}_{tr.L} \\ \dot{Q}_{1/2} &= (t_2 - t_1) \cdot \dot{m}_{tr.L} \cdot c_{ptr.L} \end{aligned}$$

Mischung zweier Luftströme

" Mischkammer "

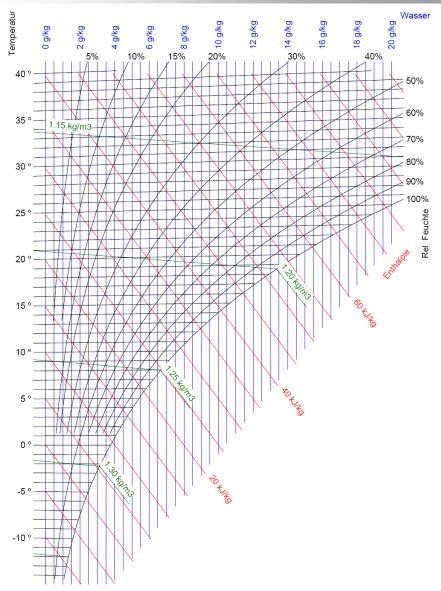
(mischt 2 Teilluftstöme (1 & 2) zu einem gemeinsamen Luftstrom M)


Erhaltungssatz für Energie:

$$\dot{m}_1 \cdot h_1 + \dot{m}_2 \cdot h_2 = \dot{m}_M \cdot h_M$$

Erhaltungssatz für Wasser:

$$\dot{m}_1 \cdot x_1 + \dot{m}_2 \cdot x_2 = \dot{m}_M \cdot x_M$$


Mischung zweier Luftströme

"Mischkammer"

Hebelgesetz der Mischkammer:

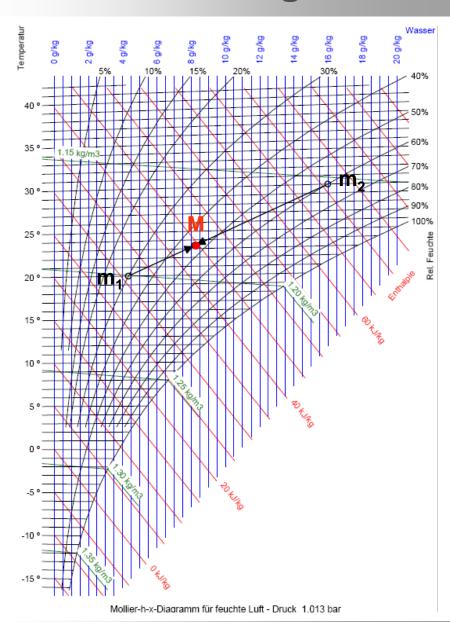
$$\dot{\mathbf{m}}_1 \cdot \mathbf{l}_1 = \dot{\mathbf{m}}_2 \cdot \mathbf{l}_2$$

Mischung zweier Luftströme

" Mischkammer "

Übung:

- Luftmassenstrom (1) = 5.000 kg/h $t_1 = 20 \,^{\circ}\text{C} / 30 \,^{\circ}\text{W}$
- Luftmassenstrom (2) = 2.500 kg/h $t_2 = 30 \,^{\circ}\text{C} / 60 \,^{\circ}\text{W}$


gesucht: h_M, x_M, t_M

Lösung:

- 1) $p_{D'(20^{\circ}C)} = 10^{(9,333 2334,895 / T)} = 23,34 \text{ mbar}$
- 2) $x_{(20^{\circ}C)} = 0.622 \cdot (0.3 \cdot 23.34 / (1.013 0.3 \cdot 23.34) = 4.33 \text{ g/kg}$
- 3) $h_{(20^{\circ}C)} = 1,006 \cdot 20 + 4,33 / 1.000 \cdot (1,86 \cdot 20 + 2.502) = 31,15 \text{ kJ/kg}$
- 4) $x_{(30^{\circ}C)} = \dots 15,99 \text{ g/kg}$
- 5) $h_{(30^{\circ}C)} = \dots 71,06 \text{ kJ/kg}$
- 6) $x_M = (5.000 \cdot 4.33 + 2.500 \cdot 15.99) / 7.500 = 8.22 g/kg$
- 7) $h_M = (5.000 \cdot 31,15 + 2.500 \cdot 71,06) / 7.500 = 44,45 \text{ kJ/kg}$
- 8) $h_M = 1,006 \cdot t_M + x_M (1,86 \cdot t_M + 2.502)$ $t_M = (h_M - x_M \cdot 2.502) / (1,006 + x_M \cdot 1,86) = 23,38 °C$

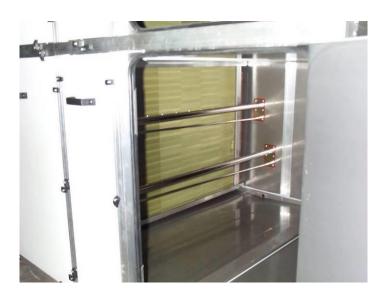
Mischung zweier Luftströme

" Mischkammer "

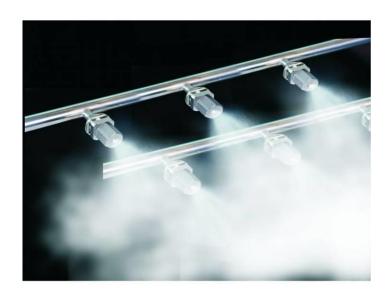
Mischen von 2 Luftmengen → AHH Programm

	,	
		Luftstrom 1
Temperatur Rel. Feuchte Abs. Feuchte Dichte feucht Enthalpie feucht Volumenstrom feucht Massenstrom trocken Kondensatmenge	°C % g/kg kg/m³ kJ/kg m³/h kg/h kg/h	20.000 30.000 4.329 1.200 31.113 4183.205 5000.000
	Luftstrom 2	Mischluft
	30.000 60.000 15.986 1.153 71.055 2203.189 2500.000	→ 23.381 46.038 → 8.215 1.184 → 44.427 6386.527 7500.000 0.000

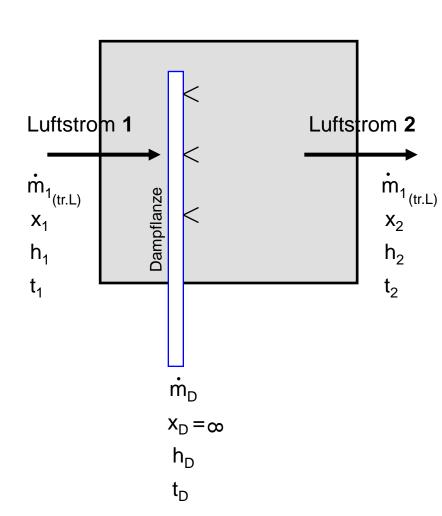
Befeuchtung


Wasser wird Luft im molekularem Zustand beigemischt:

- Verdunsten (durch zerstäuben von Wasser)
 - Düsen (Luftwäscher)
 - Rotation (Scheibenzerstäuber)
- Verdunsten (eines Wasserfilms bzw. einer benetzten Oberfläche)
 - Riesel- (Verdunstungs-) Befeuchter
 - Hybridbefeuchter
- Verdampfen (Erzeugen von Wasserdampf)
 - Dampfnetz / Dampfkessel
 - Ambulante Dampferzeuger



Befeuchtung


... mit Dampf

... mit Wasser

Dampfbefeuchtung

Wasserbilanz:

$$\dot{m}_1 \cdot x_1 + \dot{m}_D = \dot{m}_1 \cdot x_2 / \dot{m}_1$$

$$x_2 - x_1 = \dot{m}_D / \dot{m}_1$$

Energiebilanz:

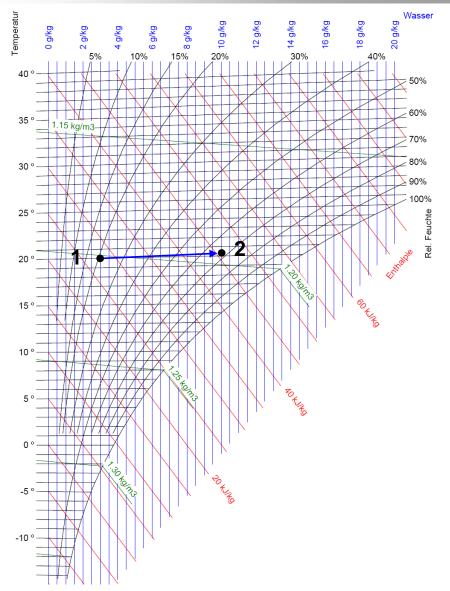
$$\dot{m}_1 \cdot h_1 + \dot{m}_D \cdot h_D = \dot{m}_1 \cdot h_2 [/\dot{m}_1]$$

$$h_2 - h_1 = \dot{m}_D / \dot{m}_1 \cdot h_D$$

Randmaßstab:

$$\Delta h / \Delta x = \dot{m}_D / \dot{m}_1 \cdot h_D \cdot \dot{m}_D / \dot{m}_1$$

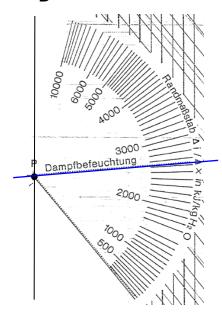
$$\Delta h / \Delta x = h_D = c_{pD} \cdot t_D + r_D$$



Dampfbefeuchtung

Die Richtung der Zustandsänderung $\Delta h / \Delta x$ ist identisch mit der Enthalpie des zugeführten Dampfes.

Die Steigung der Isothermen mit 1,86 • t_L und die Steigung der Richtungsgeraden der Dampfbefeuchtung mit 1,86 • t_D unterscheiden sich lediglich geringfügig durch 1,86 • (t_D - t_L).

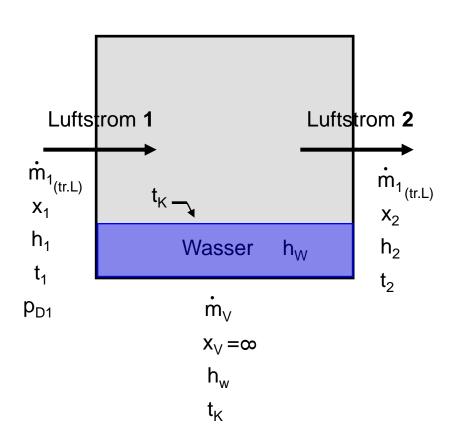


Dampfbefeuchtung

$$\Delta h / \Delta x = h_D = c_{pD} \cdot t_D + r_D$$

Beispiel: (Dampf 100 °C)

$$h_D = 1.86 \cdot 100 + 2.502$$


Beispiel:

Luft₁ t = 20 °C / ϕ = 20 % wird befeuchtet auf x_2 = 10 g/kg.

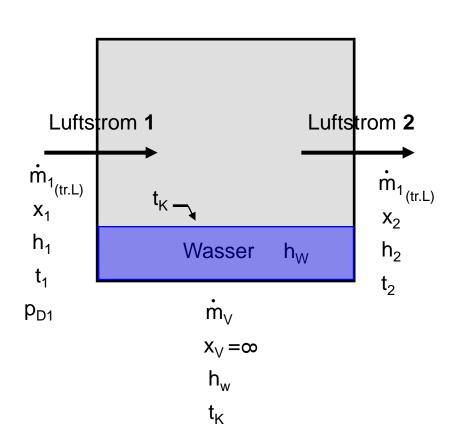
Steigung $\Delta h / \Delta x =$ 2.688 kJ/kg (Isotherme = 2.539 kJ/kg)

→ "quasi isotherm"

Befeuchten mit Wasser

Wasserbilanz:

$$\dot{m}_1 \cdot x_1 + \dot{m}_V = \dot{m}_1 \cdot x_2$$


Gesetz nach Dalton:

$$\dot{m}_V = \beta \cdot A \cdot (p_D'_{K1} - p_{D1})$$

$$x \sim p_D \rightarrow \dot{m}_V = \beta \cdot A \cdot (x_{K1} - x_1)$$

$$x_2 - x_1 = \beta \cdot A \cdot (x_{K1} - x_1) / \dot{m}_1$$

Befeuchten mit Wasser

Energiebilanz:

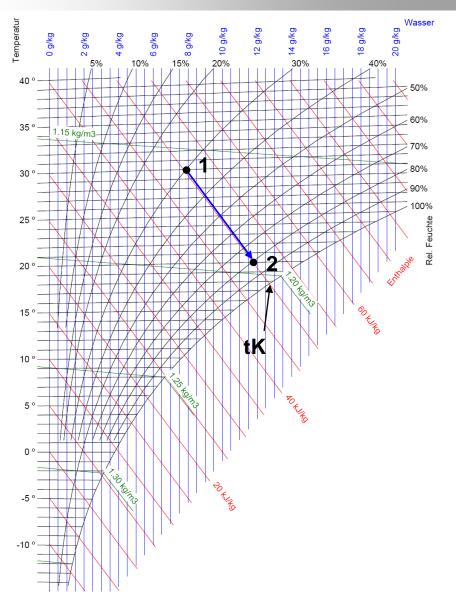
$$\dot{m}_1 \cdot h_1 + \dot{m}_V \cdot h_W = \dot{m}_1 \cdot h_2 [/\dot{m}_1]$$

$$h_2 - h_1 = \dot{m}_V / \dot{m}_1 \cdot h_W$$

$$\Delta h = \mathcal{B} \cdot A \cdot (x_{K1} - x_1) / \dot{m}_1 \cdot h_W$$

Randmaßstab:

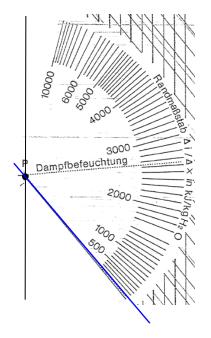
$$\Delta h / \Delta x = h_W = c_W \cdot t_{K1}$$



Befeuchten mit Wasser

Die Richtung der Zustandsänderung $\Delta h / \Delta x$ ist identisch mit der spezifischen Enthalpie des zugeführten Wassers.

Die Steigung der Isenthalpen mit 2.502 kJ/kg und die Steigung der Richtungsgeraden der Befeuchtung mit Wasser mit 2.502 + $c_W \cdot t_K$ unterscheiden sich lediglich geringfügig durch $c_W \cdot t_K$.

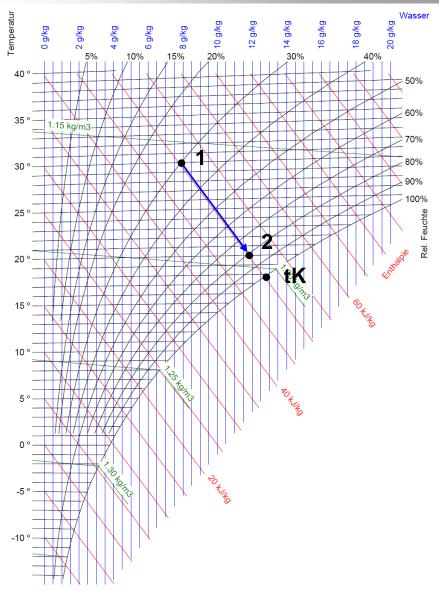


Befeuchten mit H₂O

$$\Delta h / \Delta x = h_W = c_W \cdot t_{K1}$$

Beispiel:
$$(t_k = 18 \, ^{\circ}C)$$

$$\Delta h / \Delta x = 4,15 \cdot 18 = 75 \text{ kJ/kg}$$



Beispiel:

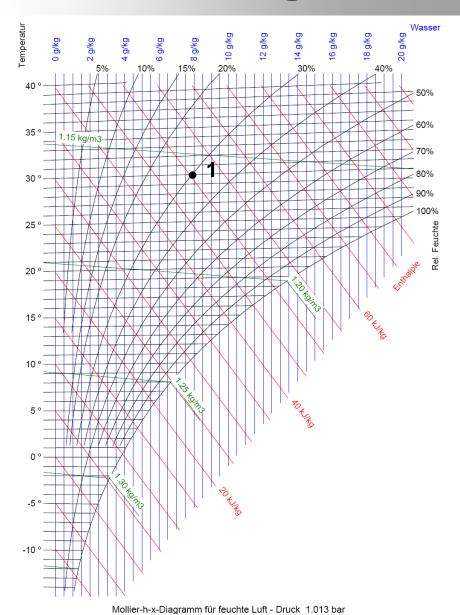
Luft₁ t = 30 °C / ϕ = 30 % wird befeuchtet mit Wasser auf ϕ ₂ = 80 %.

Steigung $\Delta h / \Delta x = 75 \text{ kJ/kg}$ (Isenthalpe = 0 kJ/kg) \rightarrow "quasi adiabat"

Befeuchten mit H₂O

Befeuchtungsgrad:

$$\eta_{BF} = (x_2 - x_1) / (x_{tK} - x_1)$$

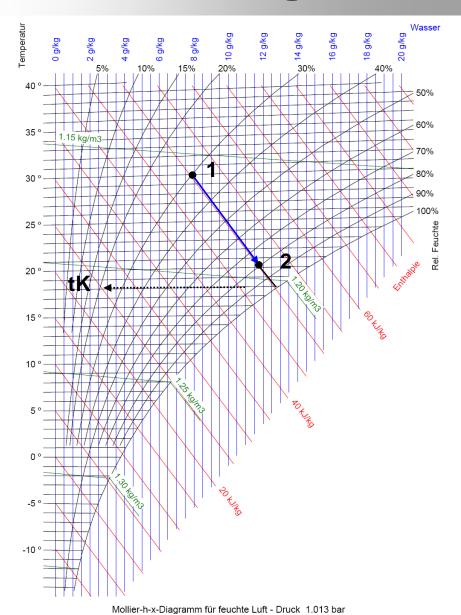

Befeuchtungsgrad:

$$\eta_{BF} = (t_2 - t_1) / (t_K - t_1)$$

Befeuchtungsgrad:

$$\eta_{BF} = \overline{(1-2)} / \overline{(1-t_K)}$$

Befeuchten mit H₂O


Übung:

Luftmassenstrom (1) = 5.000 kg/hmit einer Trockenkugeltemperatur $t_1 = 30 \, ^{\circ}\text{C} \, (\phi_1 = 30 \, \%) \text{ wird adiabat}$ (Wasser 0°C) befeuchtet. $\eta_{BF} = 80 \%$.

ges.:

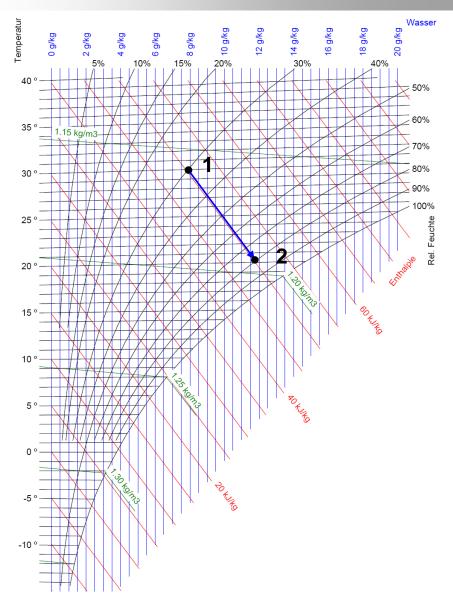
- Feuchtkugeltemperatur t_k,
- Luftaustrittzustand₂ (h₂, φ₂)
- benötigte Wassermenge
- Verdunstungsleistung

Befeuchten mit H₂O

Lösung: (HX-Diagramm)

Kühlgrenztemperatur:

$$t_K = 17.85 \, ^{\circ}\text{C} \, (\phi = 100 \, \%)$$


Befeuchtungsgrad:

$$0.8 = (x_2 - 7.89) / (12.79 - 7.89)$$

 $x_2 = 11.81 \text{ g/kg}$

<u>Luftaustrittzustand</u>₂:

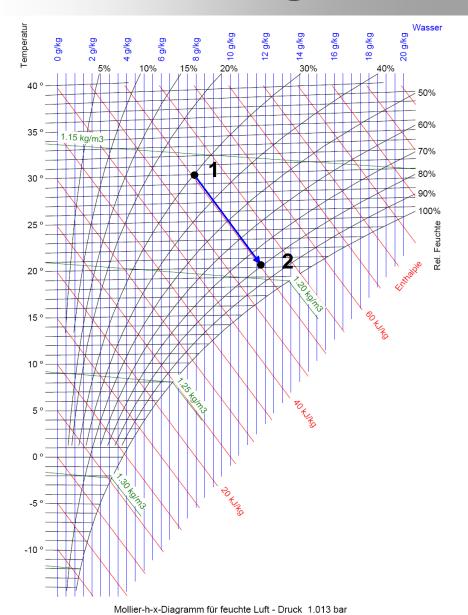
$$h_2 = 50,37 \text{ kJ/kg}$$

 $t_2 = 20,26 \text{ °C}$
 $\phi_2 = 79,6 \text{ %}$

Befeuchten mit H₂O

Lösung:

Befeuchtungswassermenge m_{BF}


$$\Delta x = x_2 - x_1 = 11,81 - 7,89$$

= 3,92 • 10⁻³ kg_W / kg_{tr.L}
• 5.000 kg_{tr.L}/h

$$= 19,6 \text{ Kg}_{\text{W}}/\text{h}$$

Verdunstungsleistung:

$$\dot{Q}_V = \dot{m}_{BF} \cdot (2.502 + 1.86 \cdot t)$$

= 19,6 \cdot 2.502 = 13,62 kW

Befeuchten mit H₂O

Lösung:

Luftaustritt t₂:

aus
$$HX \rightarrow t_2 = 20,26$$
 °C

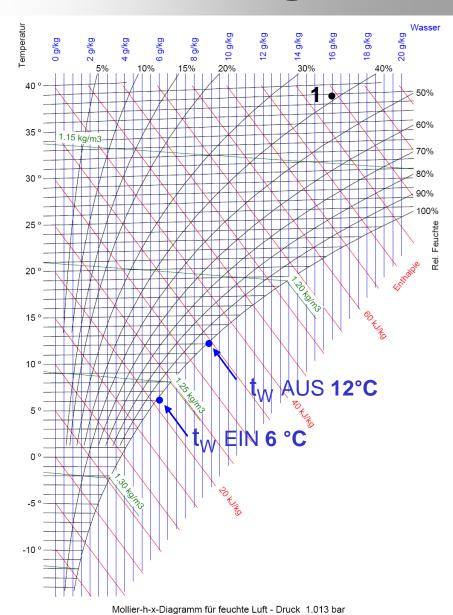
aus Verdunstungsleistung →

$$\dot{Q}_V = \dot{m}_{BF} \cdot (2502 \cdot 1.86 \cdot t)$$

= 19,6 \cdot 2502 = 13,622 kW

$$\dot{Q}_V = \dot{m}_{tr.L} \cdot c_{pL} \cdot (t_1 - t_2)$$

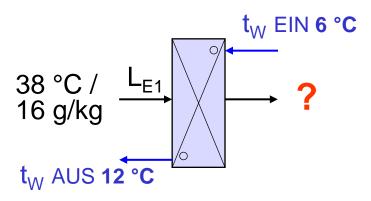
$$\Delta t = 13,622 / 5.000 \cdot 3.600 / 1,006$$


$$\Delta t = 9,74 \text{ K}$$

 $t_2 = 30 - 9,74 = 20,26 \,^{\circ}\text{C}$

Kühlung mit Entfeuchtung

Wasserausscheidung und damit Entfeuchtung findet statt, wenn die kälteste Rohroberflächentemperatur des Wärmeübertragers (bei Vorlauf t_{W EIN} z. B. 6 °C) unterhalb der Taupunkttemperatur der Luft (Eintrittzustand₁) liegt.



Kühlung mit Entfeuchtung x ≠ konstant

" feuchter Kühler "

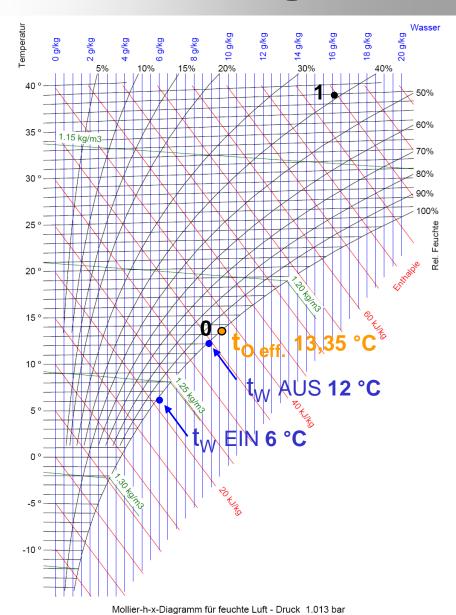
Beispiel:

Kühlung von $t_1 = 38 \,^{\circ}\text{C}$ / $x = 16 \,\text{g/kg}$ auf $t_2 = 20 \,^{\circ}\text{C}$ (Kühlmedium: Wasser 6 / 12 $^{\circ}\text{C}$)

Kühlung mit Entfeuchtung

wirksame oder effektive Oberflächentemperatur t_{O eff} (auch Apparatetaupunkt - Näherungsgleichung)

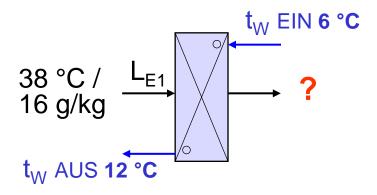
In der Klimatechnik: Lamellenabstand etwa 2,5 mm


Rippenrohrwirkungsgrad η_R ~ 85 %

 $t_{O~eff.}$ liegt um 0,15 • (t_{LE} - $t_{W~m}$) höher als die mittlere Wassertemperatur t_{Wm}

$$t_{Wm} = (t_{WEIN} + t_{WAUS}) / 2$$

$$t_{O \text{ eff.}} = t_{W \text{ m}} + 0.15 \cdot (t_{LE} - t_{W \text{ m}})$$

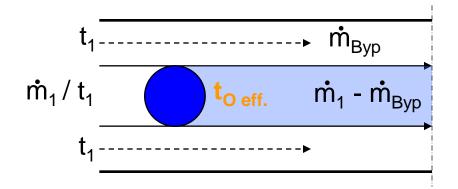

Kühlung mit Entfeuchtung x ≠ konstant

"feuchter Kühler"

Beispiel:

$$t_{Wm} = 12 + 6 / 2 = 9 \,^{\circ}C$$

$$t_{O \text{ eff.}} = 9 + 0.15 \cdot (38 - 9) = 13.35 °C$$


Kühlung mit Entfeuchtung "einstufig"

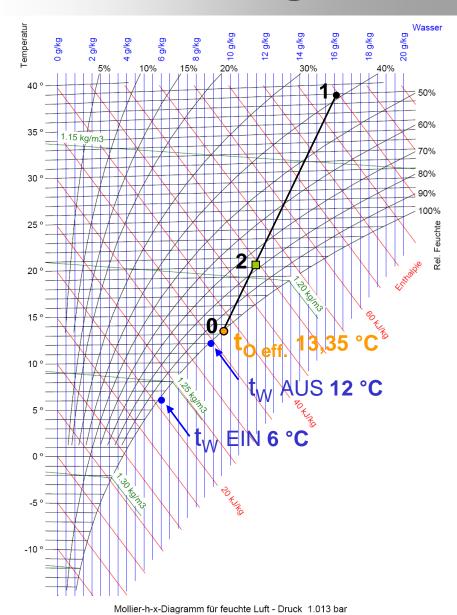
Im h-x Diagramm liegt die Zustandsänderung auf der Geraden $\overline{1}$ - $\overline{0}$ (0 = gesättigte Luft von der Temperatur der Rohroberfläche $t_{O\,eff.}$), wobei $t_{O\,eff.}$ vereinfacht unter dem Ansatz einer gleichbleibenden Wassertemperatur (Mittelwert aus Vorlauf und Rücklauf) bei "einstufiger" Betrachtung als konstant über alle Rohrreihen angenommen wird (Mischungsgleichung).

Kühlung mit Entfeuchtung

Entfeuchtungsgrad η_κ

$$\eta_K = (x_1 - x_2) / (x_1 - x_0)$$

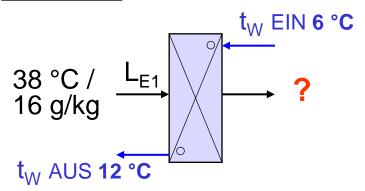
$$\eta_{K} = (t_1 - t_2) / (t_1 - t_{O \text{ eff.}})$$


$$\eta_{K} = (\overline{I_{1} - I_{2}}) / (\overline{I_{1} - I_{0}})$$

Hebelgesetz der Mischkammer

$$\dot{m}_{Byp} \cdot (\overline{I_1 - I_2}) =$$

$$(\dot{m}_1 - \dot{m}_{Byp}) \cdot (\overline{I_2 - I_0})$$



Kühlung mit Entfeuchtung x ≠ konstant

"feuchter Kühler (einstufig) "

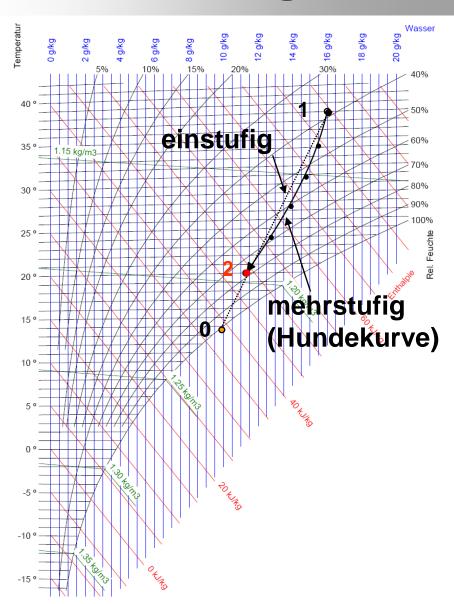
Beispiel:

$$\eta_{K} = (t_{1} - t_{2}) / (t_{1} - t_{O \text{ eff.}})$$
 $\eta_{K} = (38 - 20) / (38 - 13,35)$
 $\eta_{K} = 73 \% \rightarrow x_{K} = 11,4 \text{ g/kg}$

Kühlung mit Entfeuchtung "mehrstufig"

Tatsächlich verändert sich jedoch die Wassertemperatur und damit **t**_{o eff.} von Rohrreihe zu Rohrreihe, außerdem sind einige Rohrreihen trocken und andere nass.

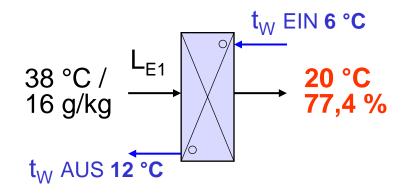
Die genaue Berechnung für eine **reale Abbildung** des Kühl- und Entfeuchtungsprozesses muss demnach schrittweise in mehreren Stufen erfolgen.



Kühlung mit Entfeuchtung "mehrstufig"

Bei dieser Vorgehensweise ist **t**_{o eff.} je Stufe, ausgehend von der jeweils mittleren Wassertemperatur, immer neu zu berechnen.

Die Zustandsänderung der Luft verläuft dann tatsächlich nicht auf einer Geraden, sondern "mehrstufig" auf einer gekrümmten Kurve (s. g. "Hundekurve").



Kühlung mit Entfeuchtung x ≠ konstant

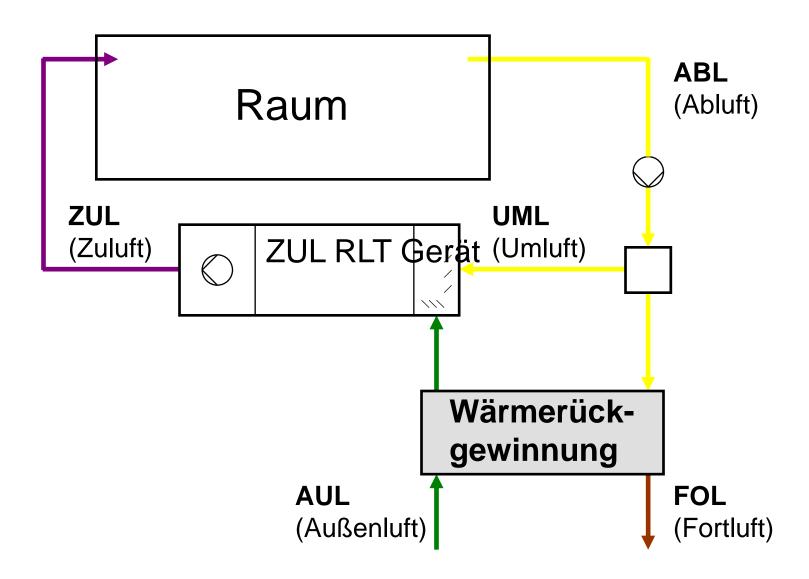
" feuchter Kühler (mehrstufig) "

Beispiel:

Rohroberfläche ist nicht konstant

Wärmerückgewinnung

Wärmerückgewinnung (WRG) ist ein Sammelbegriff für Verfahren zur Wiedernutzbarmachung von thermischer Energie in einem Prozess mit mindestens zwei Massenströmen die unterschiedliche Temperaturniveaus besitzen.


Ziel der Wärmerückgewinnung ist die Minimierung des Primärenergiebedarfs.

Wärmerückgewinnung ist damit die **Nutzung** der **ENTHALPIE** eines **Fortluft- oder Außenluftstromes** (Wärme oder Kälte) in Verbindung **mit** einem **WRG-System**.

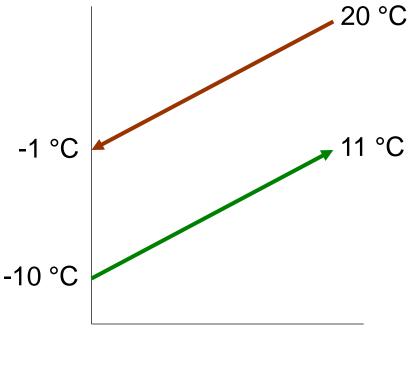
WRG ist die Wärmeübertragung von Fort- und Außenluftströmen in lüftungstechnischen Prozessen.

Dabei wird die zurück gewonnene Wärme entweder dem **Ur-sprungsprozess** oder einem **anderen Prozess** zugeführt.

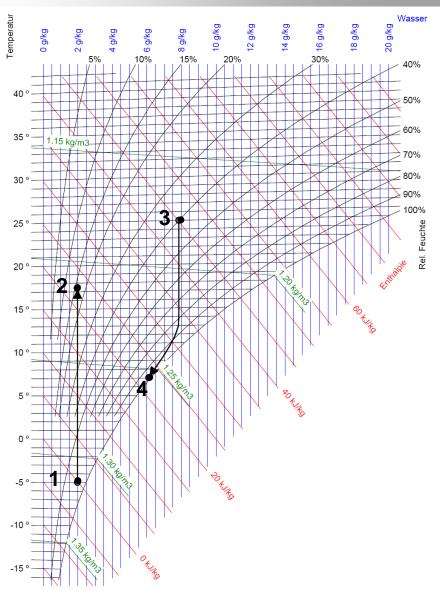
Wärmerückgewinnung (WRG)

Rückwärmzahl Ф

$$\Phi_{ZUL} = \frac{t_{ZUL} - t_{AUL}}{t_{ABL} - t_{AUL}}$$


Beispiel (
$$\dot{m}_{ZUL} = \dot{m}_{ABL}$$
):

$$t_{AUL} = -10 \, ^{\circ}C$$


$$t_{ABL} = 20 \, ^{\circ}C$$

$$\Phi = 70 \%$$

$$t_{ZUL} = 0.70 \cdot (20 - (-10)) - 10$$

= 11 °C

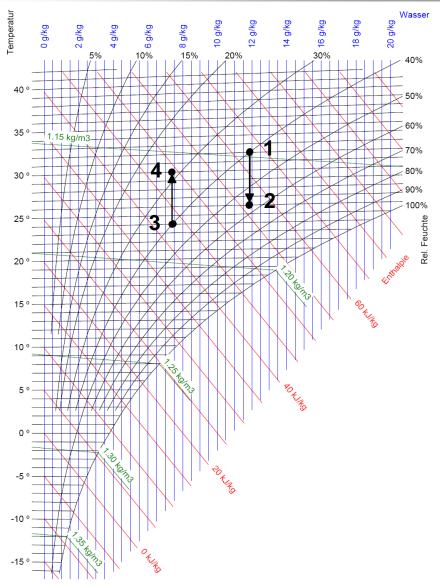
Wärmerückgewinnung

Beispiel (Winterbetrieb):

$$\dot{m}_{ZUL} = \dot{m}_{ABL} = 10.000 \text{ kg}_L/\text{h}$$

 $AUL_1 : -5^{\circ}C / 80 \%$

ABL₃: 25°C / 40 %


 $\Phi_{7UI} = 75 \%$

$$t_{ZUL} = 0.75 \cdot 30 - 5 = 17.5 \, ^{\circ}C$$

$$\dot{Q}_{1/2} = \dot{Q}_{3/4} = 10.000 / 3.600 \cdot 1,001 \cdot (17,5 + 5)$$

$$= 62,6 \text{ kW}$$

Wärmerückgewinnung

Beispiel (Sommerbetrieb):

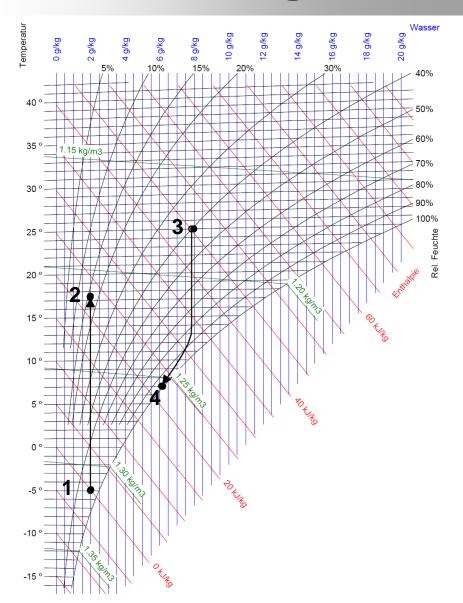
$$\dot{m}_{ZUL} = \dot{m}_{ABL} = 10.000 \text{ kg}_L/\text{h}$$

AUL₁: 32°C / 40 %

ABL₃: 24°C / 40 %

$$\Phi_{7UI} = 75 \%$$

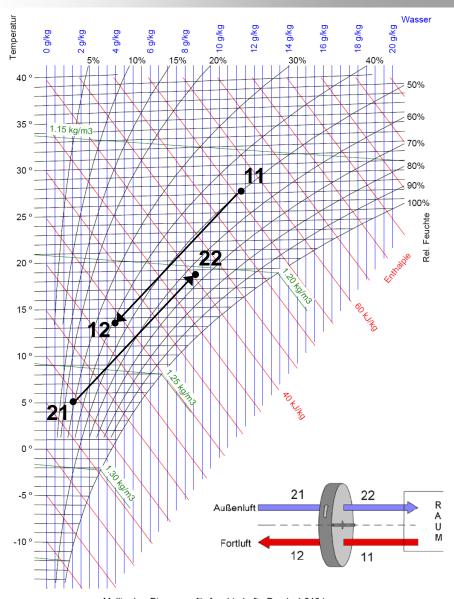
$$t_{ZUL} = 32 - 0.75 \cdot 8 = 26 \, ^{\circ}C$$


$$\dot{Q}_{1/2} = \dot{Q}_{3/4} =$$

10.000 / 3.600 • 1,001 • (32 - 26)

$$= 16,7 \text{ kW}$$

Mollier-h-x-Diagramm für feuchte Luft - Druck 1.013 bar



Wärmerückgewinnung

Rotationswärmeübertrager:

Kondensationsrotor für sensible Energierückgewinnung; latent nur im Kondensationsfall

Wärmerückgewinnung

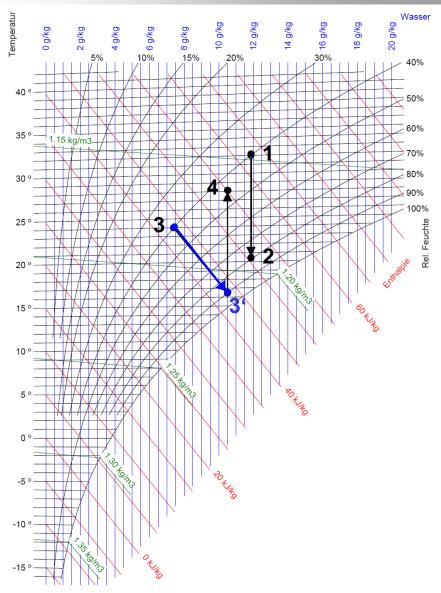
Rotationswärmeübertrager:

Enthalphierotor für sensible und latente Energierückgewinnung mit hygroskopischer Beschichtung zur zusätzlichen Feuchteübertragung

$$\Phi_{t(21)} = \frac{t_{22} - t_{21}}{t_{11} - t_{21}}$$

$$\Phi_{x(21)} = \frac{x_{22} - x_{21}}{x_{11} - x_{21}}$$

$$\Phi_{t} \neq \Phi_{x}$$


WRG mit indirekt adiabater Befeuchtung

z. B. Hybridsystem

Mit Befeuchtung in der Abluft

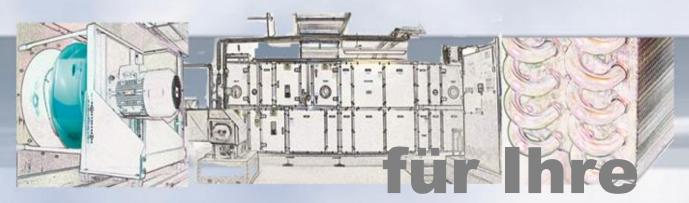
WRG

mit ABL Befeuchtung

Beispiel (Sommerbetrieb):

$$\dot{m}_{ZUL} = \dot{m}_{ABL} = 10.000 \text{ kg}_L/\text{h}$$

AUL₁: 32 °C / 40 %


ABL_{3'}: 24°C 16,5°C / 40 %

$$\Phi_{ZUL} = 75 \%$$

$$t_{ZUL} = 32 - 0.75 \cdot 2.15,5$$

= 26 °C 20,4 °C
 $\dot{Q}_{1/2} = \dot{Q}_{3/4} =$
10.000 / 3.600 • 1,001 • (32 – 20,4)

 $= 16.7 \, \text{KW} \, 32.3 \, \text{kW}$

Herzlichen Dank

Aufmerksamkeit

Raumlufttechnik hx-Diagramm

Energierückgewinnung und Energieeffizienztechnologien in der Lüftungstechnik

Dipl.-Ing. Christian Backes backes@howatherm.de

Prof. Dr.-Ing. **Christoph Kaup** c.kaup@umwelt-campus.de

