
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained 

for all other uses, in any current or future media, including reprinting/republishing this material for 

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works.



Fides: Distributed Cyber-Physical Contracts

Lars Creutz

Institute for Software Systems

Trier University of Applied Sciences

Birkenfeld, Germany

Email: l.creutz@umwelt-campus.de

Jens Schneider

Institute for Software Systems

Trier University of Applied Sciences

Birkenfeld, Germany

Email: j.schneider@umwelt-campus.de

Guido Dartmann

Institute for Software Systems

Trier University of Applied Sciences

Birkenfeld, Germany

Email: g.dartmann@umwelt-campus.de

Abstract—Current work in the field of smart contracts is
primarily aimed at developers and directly connected to an
underlying cryptocurrency. Those self-enforcing contracts are
suitable for financial applications, but often disregard regular
agreements that do not rely on digital money or are difficult
to specify in the form of program code. In order to promote
social interaction and self-organization for all types of users,
we present Fides, a framework for creating contracts based on
natural language that focuses on security and privacy. The use
of natural language, detached from the actual payment process,
allows everyone to create digital contracts inside a decentralized
peer-to-peer network without relying on an inefficient Blockchain
solution. These agreements are not only intended for interactions
between humans, but can also be established between devices by
automation.

I. INTRODUCTION

In [1], we introduced the the idea of Cypher Social

Contracts, which is an alternative protocol to the currently

available smart contract systems. In this paper, we introduce

Fides1, which is an implementation of a distributed cyber-

physical contract system that focuses on social interaction,

self-organization and privacy. Fides provides an optimized

networking stack and includes changes to the previously

described protocol to allow a better automation and validation

of processed contracts.

We start in Section II, where we review related work

and identify problems which reinforce the motivation for

creating Fides. Then we highlight our contribution and what

distinguishes Fides from other approaches in Section III.

Section IV specifies the core fundamentals of the protocol

and the additions that we made while implementing the first

public version of our system. In Section V, we discuss the

implementation in depth. In the last Section VI, we conclude

our work and describe upcoming efforts on how we try to

integrate our system in regions without Internet access, in

order to be able to participate in digital services in those

regions as well.

1The project is released under the MIT license and available at:
https://gitlab.rlp.net/l.creutz/fides
Fides is described as ”The Roman personification of honour in the keeping
of word or oath”. (Harry Thurston Peck. Harpers Dictionary of Classical
Antiquities. New York. Harper and Brothers. 1898), Perseus Digital Library.
https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:1999.04.0062 -
Accessed June 2021

II. RELATED WORKS

Before we describe our system and its implementation in

detail, we review related work and then discuss how Fides

follows a different approach in Section III. For conceptual

approaches related to the idea of Cypher Social Contracts, we

refer to [1].

False promises are often made, especially with regard to

smart contracts. A well-known example, which has already

been addressed in [2], is that lawyers will become obsolete be-

cause smart contracts cannot be changed and clearly define the

contents of an agreement. What smart contract advocates often

disregard is the complexity of transitioning legal language to

computer code and the open research questions whether these

digital agreements can be legally binding [2], [3].

Furthermore, works like [4] point out the risks of regular

smart contract systems from the point of view of developers.

These include among others high security requirements, code

verification and flawed tooling. Works like [5], [6] and [7]

implement domain-specific languages, which is quite common

in this field, especially if the results aim to be compatible to

Ethereum [8]. Most of the work is incomplete with respect

to the presented domain-specific language [6] or serves only

as a proof of concept to introduce the presented language to

existing smart contract systems. In addition, further manual

effort is required to make the generated contracts usable [5].

While a domain-specific language can make certain guarantees

with respect to the interpretation of human-readable code

in combination with the resulting machine code, a domain-

specific language, as its name implies, covers only one domain.

In order to address a broad audience and provide guarantees,

for example on legal certainty, a single domain-specific lan-

guage will most likely not be sufficient. Accordingly, it is to be

expected that multiple, independent domain-specific languages

will emerge, which can lead to compatibility problems in the

cooperation between different domains.

However, regular agreements of users or small service

providers are hardly addressed. Small, regional companies for

example, often lack both the resources for lawyers and the

digitization of their own processes. In addition, the possible

loss of money in the event of programming errors can also

act as a deterrent when using cryptocurrencies [9]. Another

problem is in the retrieval of external data within smart

contracts. For a wide range of use cases, for example in



the transfer of corporate processes to smart contracts, data is

often required that cannot be placed on a Blockchain. Oracles,

which are third party services for providing additional data,

are used for this purpose and introduce additional security

risks [10]. An attack on the external data providers could

lead to monetary loss in the context of smart contracts and

digital currencies. Due to the non-alterability of decentralized

contracts, an attack on the Oracle would be sufficient to

manipulate the execution of a contract, which could result in

permanent, irreversible damage.

The authors in [11] present a new smart contract language

with the goal of separating the communication aspect from

the computation in order to create safer smart contracts.

An intermediate language can improve the overall security

of smart contracts, especially when formal verification can

be applied [12]. However, solutions like these lack another

abstraction layer, so that the creation of contracts can be sim-

plified. In addition to intermediate languages, other (domain-

specific) languages would be needed to address more than just

developers as a target audience.

In [13], the authors present another way to implement

smart contracts by attempting to enable private information

within the contracts. To do so, they separate contracts into two

parts: the part which is executed locally and thus can contain

private data and the public part which is used to check if the

first action was actually executed. The data generated during

execution is used in combination with a zero-knowledge proof

to create a transaction that can be validated on the network

without knowing the private input.

III. CONTRIBUTION AND CONCEPT

The concept of Cypher Social Contracts [1] is inspired

by the ideas of the Cypherpunk’s manifesto [14] in terms of

decentralization, privacy of online communication, freedom of

speech and the amount of information disclosure necessary to

form digital interactions. The complexity of many systems and

their focus on developers as an audience makes it difficult for

regular users to improve their own privacy. Our contribution

is the combination and integration of the following aspects

into a novel framework to enable everyone to specify digital

agreements and to interact securely through them.

Transparency and natural language: We use a novel concept

of transparent contract templates that can be defined with natu-

ral language and are therefore completely generic. These allow

other users to derive contracts whose contents are specified

by the reusable templates. The use of natural language allows

users without programming experience to utilize our system.

Additionally any template can be revoked, which prevents the

creation of new contracts and creates the possibility to reflect

time-limited offers. Any template can be understood as an

invitation to treat [15]. The derived contract represents an

offer, which can be accepted or rejected by the creator of the

template. In order for a contract to be legally enforceable, the

template must be written accordingly in legally safe language.

However, this is also the case for any contract in the real

world. One advantage of Fides is that the tasks can be broken

down into individual, understandable tasks that can be reused

in other templates. It is still up to legal experts to determine

whether the novel contracts inside Fides can be used in a legal

context. Works like [2] and [3] address the legal aspects of

regular smart contracts.

Self-organization and decentralized structure: All interac-

tions are stored in an open, decentralized network in which

everyone can actively participate. Due to the transparent nature

of the agreements, Fides can be used without programming

experience and is therefore suitable for non-expert users.

Within our first paper [1], we described the network as a gossip

peer-to-peer network. In this paper, we propose an optimized

network architecture with full nodes and clients, where the full

nodes are responsible to document the state of the agreements.

Privacy and security: Every information that is exchanged

during the processing of contracts is encrypted by using

forward secrecy [16] per contract. The transmitted information

is thus only accessible to the two parties involved, although

the complete network is used to preserve that data.

Detached from cryptocurrencies: Our contribution is novel

in terms of generic digital contract processing in combi-

nation with secure private communication, detached from

cryptocurrencies and applications with a focus on finance.

Each payment process can be described in an abstract way

within the agreement, enabling the use of a wide variety of

payment systems.

Automation: Fides does not only allow the manual process-

ing of contracts, but also supports automation by developers.

Thus, it is possible that the easy-to-understand processes,

which may be performed manually, can also be automated

and integrated into existing system landscapes. An additional

advantage is the possibility to continuously make changes to

the underlying implementations and thus to further automate

contracts step by step.

Cyber-physical contracts: Our system can be used to create

contracts between cyber-physical devices which can be pro-

cessed continuously after being implemented and automated

once. The defined tasks per contract are comprehensible for

people who may not understand the implementation.

Decentralized mapping of agreements: Our system differs

from traditional smart contract systems like Ethereum [8], in

that the network only documents the state of contracts. Any

code in the respective system of the participating party is

executed locally, which is not only energy-saving, but also

completely sufficient for decentralized mapping of agreements.

If an untrustworthy party tries to cheat within a contract, the

entire interaction can be the basis of a legal dispute. Such

an approach allows not having to disclose the underlying

systems and business processes by having only abstract tasks

within a contract, which are locally integrated into the existing

systems. Attacks aimed at monetary losses are more difficult,

as payment transactions are initiated or verified by the indi-

vidual parties and are not tied to a digital currency within the

application. Accordingly, zero-knowledge proofs like in [13]

are not necessarily required, since the actions performed can

be immediately reviewed by the other party.



Energy Efficiency: Due to the local processing of the con-

tract, the system has a lower energy consumption, because

the input data to a contract is only readable by the involved

parties and does not cause any computation by other network

nodes. Additionally, no special hardware is required to par-

ticipate in the network. We show this in more detail through

measurements in Section V-C1.

IV. DEFINITIONS

Before we describe the overall structure and implementation

of Fides, we reiterate the definitions made in [1]. Fig. 1 shows

an overview of the components and how they are interrelated.

A. Account

An account inside Fides is described as a tuple of private

key Ki,S and public key Ki,P on the elliptic curve Curve25519

[17]. For a user i, the account is defined as:

Ai = (Ki,S ,Ki,P ) (1)

Those keys are used to sign and verify transactions, using

the signature system Ed25519 [18], and intended to be used

long-term. Short-term (ephemeral) accounts are used to derive

a shared secret when encrypting data during the processing of

a contract, using X255192 [17] Diffie-Hellman key exchange

[19], and are defined as:

AE i = (KE i,S ,KE i,P ) (2)

We note that any user can create a new set of keys for every

contract and therefore minimize the digital trace while using

the system.

B. Template

Templates are the base of any contract, define the respective

contents of an agreement and are defined as:

Oj = (HOj
,Kj,P , B, T,R, rM , V ) (3)

Here HOj
describes the unique hash of the template and

Kj,P the public key of user j who created the template. B

is description of the template whereas the other elements of

the definition refer to the tasks of a template. In general, a

task t is defined as the SHA256 hash of its description D,

whereas the description is a regular string object that can be

human readable:

ti = H(Di) (4)

In a template, the list of tasks T is defined as:

T = {D1,D2, ..,DN} (5)

Those tasks are mapped to the responsible user, which is either

the creator of the template (the receiver of the contract) or the

sender of the contract. In the implementation, we use boolean

values, where false is mapped to the sender, and true mapped

to the receiver:

R = {r1, r2, ..., rN} (6)

2The naming of the system is based on the proposal of the au-
thor of the curve. Here X25519 refers to the Diffie-Hellman key ex-
change, Ed25519 to the signature scheme and Curve25519 to the under-
lying elliptic curve used by both: https://mailarchive.ietf.org/arch/msg/cfrg/-
9LEdnzVrE5RORux3Oo oDDRksU/ - Accessed May 2021

The list of tasks is used to calculate a Merkle tree [20] whose

root hash is defined as rM and reused inside the contracts. An

addition that Fides makes to the protocol is to add Validators

inside the definition of a template:

V = {v1, v2, ..., vN} (7)

Validators describe checks, defined at the time of the template

creation, for the required input data, which are verified during

the processing of the contracts by the respective parties.

Validators are especially useful on automated contracts which

were defined by programming instead of using the application

through the command line interface. The currently available

validators are:

• Plaintext: No validation, used by a regular user without

programming.

• Range: Validate that a given value is inside a previously

defined range for the given data type.

• Regex: Validate if the input data matches a given regular

expression.

• Signature: Verify if the input data was signed using a

known public key on the same elliptic curve.

• Multiple signature: Validate that the given data was

signed by multiple separate keys.

• SHA256: Verify that the hash of the input data matches

the given value.

C. Contracts

A contract Ci,j is always an agreement between two parties

i and j and derived from a valid template Oj . Therefore a

contract must include a reference (the hash value HOj) to the

used template inside its definition:

Ci,j = (HCi,j
,Ki,P ,Kj,P , N,R, rM ,HOj) (8)

HCi,j
represents the unique hash value of the contract. Besides

the public keys of the involved parties, a contract contains

a reference to the number of tasks N , the list of who is

responsible for which task R and a reference of the calculated

Merkle tree root hash rM . The reuse of these objects requires

less memory and by using Merkle trees it is not necessary

to include the actual tasks from the template in the contract.

Both templates and contracts also contain a 4 byte nonce

which should ensure the uniqueness of the respective objects

inside our implementation. Every contract is in a state, which

is defined by the number of interactions with it:

• init: Contract was created and published.

• rejected/live: The other party (owner of the template)

rejected/accepted the contract.

• finished: All tasks have been fulfilled.

D. Transactions

A transaction of user i is defined as:

Ti = (HTi
,Si,Ki,P , type,HTl

) (9)

Each transaction, which is identified by its hash value HTi
,

must be signed using the private key Ki,S of the currently

responsible account. This signature Si can be verified using

the public key Ki,P included in the transaction. Additionally,

a reference to a previous transaction Tl (the hash value HTl
)



Tasks

Template

Hash: 670...7b2
Description: Example Template
Receiver: Y6q...CY=
Tasks: [T1,T2,T3,T4]
Responsibiliy: [F,T,F,T]
Merkle root: 9a4...7fe
Validators: [V1,V2,V3,V4]

Validator

T1 T2 T3 T4

H1 H2 H3 H4

H(1+2) H(3+4)

Merkle root
Merkle tree

Contract

Hash: bfd...f76
Sender: ocv...7s=
Receiver: Y6q...CY=
Responsibiliy: [F,T,F,T]
Merkle root: 9a4...7fe
Num. Tasks: 4
Template: 670...7b2

Transaction

Hash: c0b...22d
Signature: MEU...c4=
Sender: ocv...7s=
Last Tx: 5bf...5a8 Confirm task

Contract offer Contract accept/decline

Template publish/revoke

Type

Regex

Range

Signature

Multi Signature

Type

constructor

Account
Private key Public key

SHA256

Fig. 1. Overview of the Cypher Social Contract system. The figure shows the relationship between the introduced definitions. Some aspects, such as the type
of transaction, have been shortened for better readability and are discussed in more detail in Sections IV and V.

H1 H2 H3 H4

H(1+2) H(3+4)

Merkle root

Contract

Hash: bfd...f76
Sender: ocv...7s=
Responsibiliy: [F,T,F,T]

Transaction

Hash: c0b...22d
Signature: MEU...c4=
Sender: ocv...7s=
Last Tx: 5bf...5a8

Contract: bfd...f76
Task: H1
Proof:
2;H(3+4)
4;H2
Input data: AM...==

Fig. 2. An example of a simplified transaction that contains the necessary
data to confirm a task in an active contract. The transaction addresses the
previously created contract and the hash value of the task to be confirmed.
Additionally included is the proof in the form of array elements and their
position with respect to the full binary tree. Before any input is encrypted
and added to the transaction, the validator assigned to that task will check the
unencrypted input data.

is included on every type of transaction except when it comes

to the publication of a template. Transactions are the only way

to change the state of the contracts or templates and always

originate from a user. Transactions can be of the following

different types that add different elements to (9):

• Template publish: Publish a new template Oj which can

be used to derive contracts from.

• Template revoke: Set an active template to inactive what

prohibits the creation of new contracts. The template is

addressed by its hash value HOj
.

• Contract offer: An active template was used to create

a new contract Ci,j . Now the owner of the template

can decide whether to accept or decline the offer. The

transaction also includes an ephemeral public key KE i,P ,

which is later used to encrypt exchanged data.

• Contract accept/decline: Accept/decline a contract iden-

tified by its hash value HCi,j
. Provided the contract is

accepted, the transaction additionally contains the other

temporary public key KE j,P .

• Confirm task: Confirm a task of a live contract. This

transaction must include the necessary information about

that task and a proof to show the network that this

task is part of the contract. For this purpose we use the

included proof in combination with the Merkle tree root

hash rM of the contract to check if the task is indeed

part of that tree. It is important to note that this check

can be performed without accessing the template (due

to the reused elements when creating the contract) and

therefore we just need to handle log
2
(N) hash values

per transaction. Any user input required to confirm that

task is encrypted using the exchanged ephemeral keys

and added to the transaction. An example of a simplified

transaction is shown in Fig. 2.

V. IMPLEMENTATION

Having covered the basic definitions of the protocol, the

following section now presents the core components of the

implementation.

A. API

The API describes how Fides is structured and how it can

be used in external programs. In general, the API is divided

into the following components:



• abst: Abstractions of the system, for example to use

Fides within a different context. The module exists to

create a separation to the core functionality. Currently

we are working on a compatible LoRaWAN abstraction

to be able to create and process contracts without Internet

connection.

• cli: Implementations regarding the command line inter-

face.

• core: The core modules of Fides: account management,

networking, configuration, encryption, storage, validators,

templates, contracts, transactions and serializable types.

• external: External modules/libraries separated from the

other components.

• hooks: Automation for templates or contracts. Hooks can

be started from the API or via the command line interface.

• utils: Utility functions like logging or time functions

used by many parts of the application. Furthermore, this

module contains additional functions for assigning aliases

for contracts, templates and accounts to simplify the

usage of the command line interface.

It should not be the scope of this paper to describe every

aspect of the API in detail, therefore Algorithm 1 illustrates

some core concepts when using the framework, like how to

create and publish a template or use an existing template to

create a contract.

Algorithm 1 Brief example on how the API of Fides can be

used. We show the usage from the perspective of two users.

The first user Bob creates and publishes a template, which is

then used by Alice to create a new contract.

1: from fides.core.config import ACCOUNT PATH

2: from fides.core.account import load key

1: from fides.core.template import Template

2: from fides.core.types import Validator

3: t ← Template()

4: a ← load key(ACCOUNT PATH + ”bob”)

5: t.tasks = [”First task”, ...]

6: t.responsibility = [True, ...]

7: t.validators = [Validator(...), ...]

8: t.description = ”My first template”

9: t.finalize(a) ⊲ Calculated template hash: 582...592

10: t.publish(a)

1: from fides.core.contract import Contract

2: c ← Contract()

3: a ← load key(ACCOUNT PATH + ”alice”)

4: c.create(”582...592”) ⊲ Template hash

5: c.finalize(a)

6: c.publish(a)

B. Command line interface

The system can be used through the command line interface

fds, which is recommended for regular users. Fig. 3 shows a

Fig. 3. Command line interface fds

brief overview of the available commands within the appli-

cation, which are aligned with the API. In order to create or

automate applications in the form of templates and contracts,

experienced developers should use the API directly and import

the module into their application accordingly. The API and

fds do not interfere with each other and can therefore be

used in parallel, for example to manually check the current

state of a contract while other activities are automated in the

background.

C. Network

Within our first paper [1], we described the network as

a gossip peer-to-peer network which was sufficient to test

the core functionality of the system. However, in order to

provide a system for the general public, some major changes

were made to the network architecture to reduce any potential

attacks on the system. One common problem inside a gossip

network is the presence of spam. Since our system is based

on trust and the templates or contracts are defined solely in

natural language, it is not possible to reduce spam. Therefore,

our approach is not to prevent spam, but to make targeted

spam of individual network participants more difficult and not

profitable. In order to describe the network architecture of

Fides, a distinction must first be made between clients and full

nodes. The type of network participant is defined via the global

configuration file which is created when initializing the system

using fds. The same configuration contains the information

about which network to join. Each network is precisely defined

by its name, which means that semantically different networks

can coexist with the same version of Fides, as well as that the

users’ data is not mixed within these networks, provided that

the configuration remains the same for all users.

1) Full nodes: Full nodes are users or institutions that

form the network by storing and verifying templates and

contracts. In order to participate in the network, they must

open the corresponding TCP port so that clients are able

to communicate with them. The purpose of full nodes is



TABLE I
TEMPLATE INDEX IT

Table Contents Description

Metadata Template, state, owner,
transaction3

Necessary information
about a specific template

Templates Template hash, contract
hash, contract transaction

Connection of contract and
used template

Transactions Hash, data Transaction data referenced
by the other tables

TABLE II
CONTRACT INDEX IC

Table Contents Description

Contracts Contract hash, state, last tx,
transaction4, current task

All the necessary infor-
mation to manage the
state of a contract

Transactions Hash, data Transaction data that
interacted with a par-
ticular contract

to provide a distributed index that contains objects such as

templates or contracts.

In order to implement the remote procedure call (RPC)

methods we use gRPC5. We distinguish between template

index IT and contract index IC which were both realized

by using a SQLite6 database. The template index maps the

state of active templates and the corresponding offers of users

for the specific template. Table I describes the contents of the

index. The template index is updated by users of a specific

template or by the owner when accepting or declining new

offers. A matching contract index IC is created for each

published contract. In accordance Table II shows the contents

of a contract index. To implement a decentralized network

architecture with a distributed hash table like lookup, we

implemented a modified version of the Chord protocol [21].

The basic concept of Chord describes an efficient, distributed

and generic peer-to-peer lookup service. Therefore a number

of nodes are connected within a ring structure where each

node knows its predecessor, successor and has a routing table,

called the finger table. Within this structure it is possible to

store key-value pairs on nodes, depending on their node id, and

perform lookups with high probability in O(logN) time [21],

by addressing its direct neighbours or by using the finger table.

Due to continuously stabilizing and updating the finger tables,

this system design allows to keep the ring structure intact

when nodes join or leave the network. Splitting between two

types of indices offers the advantage of referencing a contract

in two places within the network when it is created: On the

template index and on its own separate contract index, which

contributes to the reduction of targeted spam. For example, if

a full node manages a template, a malicious party cannot spam

that node with targeted data, because newly created contracts

are distributed uniformly across the network to the number of

3Hash of the transaction that published the template
4Hash of the transaction that published the contract offer
5https://grpc.io/ - Accessed May 2021
6https://sqlite.org/ - Accessed July 2021

Full node

Client

RPC (regular)

RPC (rejected)

Fig. 4. Network architecture of Fides. The isolation prevents other full nodes
within a different network of disturbing the ring structure. It is shown that full
nodes are allowed to perform RPC calls when they are part of the network
(inside the ring). Clients are only allowed to perform a subset of RPC calls
on full nodes (outside the ring).

full nodes. For the use in Fides we have added some additional

features to our Chord implementation, like the validation of

the caller that invokes the function. We check if the origin of

the call is inside the same network by computing the id of the

node to verify that only other full nodes are able to alter the

structure of the network:

id = SHA256(network ⊕ ip⊕ port) (10)

Here ⊕ denotes the concatenation. The other full nodes must

accept requests on that public ip:port combination and state to

use the same network as the full node validating the call. Fides

extends the implementation by adding more remote procedure

calls that can be used by clients to update the index, creating an

isolation level between full nodes and clients that is illustrated

in Fig. 4. Clients do not need to know the current ring structure

to submit their transactions. This supports the privacy of the

users, since with each transmission another node within the

ring can be addressed. Within the implementation, a randomly

chosen endpoint in the same network is selected. Full nodes

take care of the assignment of the transaction to the responsible

node within the ring. To do so, they first check whether

they themselves are responsible for the request by comparing

the distance of their node id to the hash of the addressed

object, which are both SHA256 hash values. If another node

is responsible, the complete request is forwarded using the

routing table of the protocol. Thus, the receiving node knows

only the information from the other full node, but not the exact

origin of the transaction.7 An important point to stabilize the

network is the handling of the respective indices when a full

node leaves the network. Thus, if the application terminates

7We note that the information could still be used to draw conclusions about
the actual origin of the transaction. The timestamp (if not manipulated) can
provide hints about when the transaction was sent. In addition, the type of
the node can indicate whether the transaction, if it is sent directly to the
responsible full node without being forwarded, is from a client, since clients
do not allow requests on the public port.



Fig. 5. CPU and Memory usage on a full node. The average memory usage
is constant at about 1.1%, even with different transaction sizes during the
measurement. The average CPU usage is 0.2%.

correctly, the contents of the index must be passed to the

immediate successor of the node [21]. For this purpose, the

current index node sends a request to its immediate successor.

The request contains the wish to transfer an object, which is

identified by its hash and type. The requested node checks the

correctness of the request by first validating the information

about the node as described in (10) afterwards making sure

that the requesting node is indeed the immediate predecessor.

After all checks are successful, the new index node requests

the objects to be transferred from its predecessor and creates

the same index. We have chosen that procedure and transfer

the index only when nodes leave, not when a new nodes joins.

This is based on the assumption that index nodes are usually

executed on continuously accessible systems (e.g. servers).

Furthermore, the state of the network is restored by the users

in all cases anyway (see Table IV), which is also used if a

full node is abruptly unavailable and thus has not initiated

the transfer (e.g. due to a power failure). Nevertheless, at this

point we would like to describe a possible attack on the system

that is related to faulty clients. To the extent that a full node

documents the state of a contract and cannot transmit the index

in the event of an error, an untrusted party can manipulate

the processing of the contract by deleting the last transaction

(locally) and sending a new transaction with different data.

The index node, which at that point does not know the contract

(due to failure), will build that index from scratch and assume

that the transactions are correct. Such an action would be im-

mediately noticed by the other party and expose the attempted

fraud, because the malicious transaction cannot be applied to

the other (correct) local state. To conclude our description

of full nodes, we would like to discuss the requirements to

the underlying hardware. Since Fides is intended to promote

self-organization, especially for structurally weak regions, one

condition for the application is that it must also be functional

on non-powerful, cheap hardware. Within our experiments we

Fig. 6. Network traffic captured on the default port at a full node. The regular
background update intervals, as well as individual transactions that contain
more data, are shown.

TABLE III
DETAILED INFORMATION ABOUT THE USED PROCESSOR WITHIN THE

SIMULATED HARDWARE

Model name Intel(R) Xeon(R) CPU E5-2640 v3

Sockets 1

Cores per socket 2

Threads per core 1

CPU MHz 2600

L1d cache 32K

L1i cache 32K

L2 cache 256K

L3 cache 20480K

have used a virtual server with a simulated dual core processor

and 4GB of memory. Table III shows the more detailed

specifications of the processor and emphasizes that a similar

system can be operated cheaply both self-hosted and within a

Cloud environment. The information was retrieved using the

lscpu8 command. Fig. 5 shows one example measurement that

contains the transactions of multiple users during a timespan

of about 30 minutes. Here, the utilization of memory is about

constant at 1.1%, while the CPU usage is 0.2% on average. A

spike9 can be noticed from time to time, but the overall uti-

lization of the system by the full node process remains below

13 percent. The measurements were performed in one-second

intervals using the top10 application on the virtual server. In

addition, the measurement in Fig. 6 shows the network traffic

at the same time period. The graph shows the automatic update

intervals of the currently active users, between which manual

updates were still performed from time to time. Spikes in the

graph show the publishing of transactions with contents, for

example the publishing of templates or transactions during

8https://man7.org/linux/man-pages/man1/lscpu.1.html- Accessed October
2021

9The spike at minute 15 was caused by a transaction that included encrypted
input data to the confirmation of a task. However, later similar transactions
of about the same size or bigger did not cause a higher CPU usage.

10https://man7.org/linux/man-pages/man1/top.1.html - Accessed May 2021



TABLE IV
ALIGNMENT OF THE LOCAL INFORMATION OF AN OBJECT WITH THE

CURRENTLY AVAILABLE INFORMATION OF THE INDEX

Local state Index state Action

any no state at index Republish entire object

behind advanced Get transaction(s) and apply to local
object

advanced behind Update the index with the missing
transaction(s)

the processing of contracts. This measurement was performed

using tcpdump11. The figures are intended to illustrate that the

load on the system is small, even if the number and size of

transactions increase over time.

2) Clients: Clients describe regular users who have decided

not to contribute to the functioning of the network and only

want to manage their templates and contracts via Fides. Users

connect to the network using their local database to locate at

least one full node inside the same network. New nodes are not

automatically added, which makes it possible to use private

instances of the network, for example within a corporate

infrastructure. If the full nodes contained therein are located

behind a firewall and are thus not accessible from the public

Internet, any number of clients or full nodes from the same

network can access the system’s functions without inadver-

tently making information publicly available. Furthermore, it

is still possible to add new nodes, for example through the

command line interface, by traversing the entire network or

manually adding new endpoints. In general, when regular

clients start the network, for example through fds, they need

to check whether the local state of their contracts/templates

is still valid and equal to the state of the network. Therefore

they ask the full nodes to obtain the current version of the

index of the object to verify and apply the action described

in Table IV. This approach allows both parties to restore

their local state in the event of a failure of the full node.

Accordingly, over the period of the synchronization intervals,

the same view is obtained in the network. For example, if

one party restores an old state, the other party updates it

again until the correct state is recovered. Fig. 7 shows the

complete interaction from creating a template to processing a

contract between two clients within the same network. Since

Fides should not only be cheap to run as full node, but should

also work for regular users on low-end hardware, all functions

of the system work flawlessly on Raspberry Pi computers

from version 3 and higher. Furthermore, the Raspberry Pi

also serves as a hardware platform on which the previously

mentioned LoRaWAN abstraction was implemented.

D. Encryption

Because Fides has a special focus on privacy and anonymity

of the users, we use forward secrecy [16] to securely transmit

sensitive information. The transparent nature of our template

definition allows any user to see which information needs to

11https://man7.org/linux/man-pages/man1/tcpdump.1.html - Accessed May
2021

be shared before interacting with the other party. In order

to transfer this information securely, a separate account is

generated for each contract (2). Generally, the regular account

is used to access the temporary account, which is stored

encrypted and is only readable by the current user due to the

file system access restriction. Referring again to the definitions

introduced earlier, the transactions for exchanging temporary

keys are as follows:

Tj = (HTj
,Sj ,Kj,P ,Oj) (11)

Ti = (HTi
,Si,Ki,P , Ci,j ,KE i,P ) (12)

Tj = (HTj
,Sj ,Kj,P ,HCi,j

,KE j,P ) (13)

The first transaction (11) publishes the template which is then

used by i who includes the created contract and an ephemeral

public key KE i,P (12). When accepting the contract (13), the

other party references it by its hash value and also attaches

its temporary public key KE j,P . We first use the described

method to exchange ephemeral keys using Elliptic Curve

Diffie-Hellman (ECDH) [19] which are used when a task of

the contract is confirmed. The hash of the last transaction HTl

is used as input parameter to the HMAC-based Key Derivation

Function (HKDF) [22]. The obtained secret is then used to

symmetrically encrypt the input data using AES-256 [23].

To comply with the chosen AES mode CBC [24], we use

Public Key Cryptography Standards #7 (PKCS7) [25] to add

padding to the input data. The returned initialization vector

and ciphertext are then added to the transaction.

E. Communication

Having covered the fundamental aspects of the implemen-

tation in the previous paragraphs, we will now describe the

local communication of the system in order to illustrate the

overall system. The majority of communication is handled by

a daemon process (fidesd), which is usually started using the

command line interface. The daemon process manages the

following components:

• RPC-Server: The entry point for any regular commu-

nication with the system. Here, the server listens only

to local connections and implements a RPC method,

which receives already finalized transactions that are

then transmitted to the network. That method is called

by the core objects such as contracts or templates (see

Algorithm 1). In order to implement the RPC methods,

we rely on the same library as on the full nodes, which

has the advantage that any message size limitations12

or errors already occur locally. If a transaction raises

an error during the local communication, it cannot be

transferred to the network. If an erroneous transaction

does arrive at a full node, it can be concluded that

it is a deliberately wrong-acting party or an attacker,

which makes it possible to exclude that party from using

the system. In addition to the method for transmitting

transactions, the RPC server also implements functions

12The default gRPC message limit in python is 4MB. Fides limits the
transaction size to 1MB since release 0.1.4.



Template
1) Create and publish template 2) Fetch template

Template

Contract

3) Create contract
from template

4) Publish contract

Contract
5) Get new offers

6) Accept contract

7) Confirm task

8) Confirm task

Fig. 7. General communication flow using the example of two clients. The person shown on the left creates a template, which is imported by the other person
to create a contract from it. The processing takes place on the local objects, whose state is monitored by the distributed index. For simplicity, the arrows are
used for transactions as well as for general requests to the network. The parties always use different full nodes to transmit their transaction to the network.

to safely stop the network daemon and collect status

information that is used by the command line interface.

• Publisher: This component forwards the received transac-

tions to the network. Currently, there is only a single (reg-

ular) publisher, which is used to transmit the transactions.

In general, the component is derived from an interface,

which allows to develop further abstractions that interact

with the network in a different way.

• Chord-Server: For full nodes fidesd additionally manages

incoming connections. Therefore the daemon starts an-

other RPC server that implements the functionality de-

scribed in Section V-C1. The exact functionality depends

on the configuration, so it is also possible to create private

subnets with full nodes or to test applications locally

without participating in a public network.

In order to improve the usability, some functions of the

command line interface use the publishing interface directly,

for example to be able to check the state of a contract manually

without starting the entire communication daemon. However,

information is only obtained in this way, not sent.

F. Automation

The features described so far primarily addressed regular

users and described the underlying architecture of Fides. In

order to additionally address developers, the module Hooks

will be described in the following, which allows the dynamic

automation of templates and contracts by observing the current

state of the system. In general, a Hook is bound to an object

(contract or template) and contains the following components:

1) Callback: Function to be called when the condition of

the Hook is activated. The callback is a method inside

an arbitrary Python script on the same system.

2) Arguments: Additional arguments of the user that will

be passed to the callback.

3) Called: A simple flag to indicate whether the callback

has already been called.

4) Live Forever: Another flag to declare that the Hook

should continue to run after the first invocation of the

callback.

5) Interval: The interval in which the condition of the Hook

is monitored.

Hook

fidesd

Publisher

DB

read/write

start

start

monitor

Fig. 8. Each Hook is independent of the core system and monitors the state
of the database separately. The networking deamon is responsible for the
communication with the network, whereby incoming or outgoing transactions
change the state of the objects, causing the associated Hook to execute the
contained callback.

TABLE V
CAPABILITIES TO AUTOMATE PROCESSES WITHIN Fides THROUGH THE

Hooks MODULE.

Hook Description

Contract accepted Exclusively run the callback if a contract has been
accepted. Usually used by the sender of a contract.

Contract rejected Execute the callback bound to a contract if that
contract was declined by the owner of a template.

Contract changed React to any state change. Recommended if that
contract is entirely automated.

Contract complete Monitor a finished contract. Can be used to auto-
mate the export of the contract data and cleanup
the used ephemeral keys.

Template used Run the defined callback if a template has been
used. Important for template owners to automate the
processing of new contract offers.

The module accesses the local databases and monitors

whether changes have been made. This happens, for example,

when the state of a contract changes either actively by

sending a transaction, or passively by updating the index.

Fig. 8 gives an overview of how the module is integrated

into Fides. Table V describes the available types of Hooks

and briefly explains their field of application. Any Hook can

be started either dynamically within a program or after an

export by the command line interface.



VI. CONCLUSION AND FUTURE WORK

The paper presented Fides, a framework for creating, pro-

cessing and automating contracts based on natural language

with a strong focus on privacy.

We started by formally introducing the underlying idea of

the Cypher Social Contracts protocol with additional features,

which were created as a result of implementing Fides.

Next, we addressed the implementation by describing both

the API and the command line interface and went into detail

about the distributed network architecture for the communi-

cation of the network participants. Besides the local com-

munication, we also discussed the encryption used by the

parties when exchanging data. Furthermore we presented mea-

surements that showed that the application can be used even

on low-power hardware. This supports the core idea of the

system, namely self-organization, since no special hardware

is needed to participate in the network. Additionally, in order

to address potential developers, we presented ways to automate

the processing of templates and contracts.

Our next steps are to introduce the system to the general

public, especially in rural areas. For this purpose, we created

an abstraction that enables contract participation via LoRaWAN

using a Raspberry Pi, so that regions without Internet ac-

cess can also participate in digital services. Therefore we

implemented a protocol to translate LoRaWAN payloads to

Fides transactions, which is used in combination with a secure

middleware service. Both the abstraction and the specification

of the middleware will be available in a later release of the

software.

Furthermore, we continuously extend the functionality of

the released framework and improve the usability in order to

address a broader audience.

ACKNOWLEDGMENT

This work has been funded by the Federal Ministry of

Transport and Digital Infrastructure (BMVI) within the

research initiative ”mFUND” under the grant number

19F2102F.

REFERENCES

[1] L. Creutz and G. Dartmann, “Cypher social contracts a novel protocol
specification for cyber physical smart contracts,” in 2020 International

Conferences on Internet of Things (iThings) and IEEE Green Computing

and Communications (GreenCom) and IEEE Cyber, Physical and Social

Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE

Congress on Cybermatics (Cybermatics), 2020, pp. 440–447.
[2] E. Mik, “Smart contracts: terminology, technical limitations

and real world complexity,” Law, Innovation and Technology,
vol. 9, no. 2, pp. 269–300, 2017. [Online]. Available:
https://doi.org/10.1080/17579961.2017.1378468

[3] E. Gyr, Blockchain und Smart Contracts: die vertragsrechtlichen Imp-

likationen einer neuen Technologie. Rechtswissenschaftliche Fakultät
der Universität Bern, 2019.

[4] W. Zou, D. Lo, P. S. Kochhar, X. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[5] C. K. Frantz and M. Nowostawski, “From institutions to code: Towards
automated generation of smart contracts,” in 2016 IEEE 1st International

Workshops on Foundations and Applications of Self* Systems (FAS*W),
2016, pp. 210–215.

[6] E. Regnath and S. Steinhorst, “Smaconat: Smart contracts in natural
language,” in 2018 Forum on Specification Design Languages (FDL),
2018, pp. 5–16.

[7] M. Wöhrer and U. Zdun, “Domain specific language for smart contract
development,” in 2020 IEEE International Conference on Blockchain

and Cryptocurrency (ICBC). IEEE, 2020, pp. 1–9.
[8] V. Buterin et al., “Ethereum white paper,” [Online]. Available:

https://github.com/ethereum/wiki/wiki/White-Paper (Accessed June
2021), 2013.

[9] K. Krombholz, A. Judmayer, M. Gusenbauer, and E. Weippl, “The other
side of the coin: User experiences with bitcoin security and privacy,” in
International conference on financial cryptography and data security.
Springer, 2016, pp. 555–580.

[10] A. Egberts, “The oracle problem - an analysis of how blockchain oracles
undermine the advantages of decentralized ledger systems,” 2017.

[11] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, and K. C. G.
Hao, “Safer smart contract programming with scilla,” Proc. ACM

Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360611

[12] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi,
G. Gonthier, N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote,
N. Swamy, and S. Zanella-Béguelin, “Formal verification of smart
contracts: Short paper,” in Proceedings of the 2016 ACM Workshop

on Programming Languages and Analysis for Security, ser. PLAS ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
91–96. [Online]. Available: https://doi.org/10.1145/2993600.2993611

[13] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
“Chainspace: A sharded smart contracts platform,” 2017.

[14] E. Hughes, “A Cypherpunk’s Manifesto,” [Online]. Available:
http://www.activism.net/cypherpunk/manifesto.html (Accessed June
2021), 1993.

[15] A. Burrows, A Casebook on Contract. Bloomsbury Publishing, 2018.
[16] W. Diffie, P. C. V. Oorschot, and M. J. Wiener, “Authentication and

Authenticated Key Exchanges,” 1992.
[17] D. J. Bernstein, “Curve25519: New diffie-hellman speed records,” in

Public Key Cryptography - PKC 2006, M. Yung, Y. Dodis, A. Kiayias,
and T. Malkin, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2006, pp. 207–228.

[18] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y.
Yang, “High-speed high-security signatures,” Journal of Cryptographic

Engineering, vol. 2, no. 2, pp. 77–89, Sep 2012. [Online]. Available:
https://doi.org/10.1007/s13389-012-0027-1

[19] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE

Trans. Inf. Theory, vol. 22, pp. 644–654, 1976.
[20] R. Merkle, “Protocols for Public Key Cryptosystems,” 04 1980, pp. 122–

134.
[21] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan, “Chord: A scalable peer-to-peer lookup service
for internet applications,” in Proceedings of the 2001 Conference on

Applications, Technologies, Architectures, and Protocols for Computer

Communications, ser. SIGCOMM ’01. New York, NY, USA:
Association for Computing Machinery, 2001, p. 149–160. [Online].
Available: https://doi.org/10.1145/383059.383071

[22] H. Krawczyk, “Cryptographic extraction and key derivation: The
hkdf scheme,” in Advances in Cryptology - CRYPTO 2010, 30th

Annual Cryptology Conference, ser. Lecture Notes in Computer
Science, vol. 6223. Springer, 2010, pp. 631–648. [Online]. Available:
https://www.iacr.org/archive/crypto2010/62230625/62230625.pdf

[23] M. Dworkin, E. Barker, J. Nechvatal, J. Foti, L. Bassham, E. Roback,
and J. Dray, “Advanced encryption standard (aes),” 2001-11-26 2001.

[24] W. F. Ehrsam, C. H. W. Meyer, L. Smith, and W. L. Tuchman,
“Message verification and transmission error detection by block
chaining,” 4 1976, US Patent US4074066A. [Online]. Available:
https://patents.google.com/patent/US4074066A/en

[25] B. Kaliski, “Pkcs #7: Cryptographic message syntax version 1.5,”
Internet Requests for Comments, RFC Editor, RFC 2315, March 1998,
[Online]. Available: http://www.rfc-editor.org/rfc/rfc2315.txt (Accessed
July 2021).


