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Abstract—In this paper we present Grond, a Python implemen-
tation of a distributed hash table based on the Chord protocol
that was used inside the cyber-physical contract framework Fides.
We implemented several extensions and improvements over the
original Chord specification. Some of these enhancements are
specific for the use with Fides, but most are general enhancements
to improve the stability and security of the framework. The
implementation can be transferred to other domains due to
its extensibility with custom remote procedure calls and is also
useable on lightweight hardware, which we show in reproducable
measurements.

I. INTRODUCTION

In [1], we presented a novel concept for cyber-physical

contracts, which are an alternative to regular smart or ricardian

contracts [2]. This concept was implemented within its refer-

ence implementation Fides and published in [3]. Decentralized

systems are particularly suitable for the processing of such

contracts and also underline the core idea of the concept,

namely self-organization. Since there are only a few stable

projects in the Python programming language that provide

distributed hash table (DHT) functions in the way they are

used for these cyber-physical contracts, we developed our

own system Grond1 as part of Fides. It combines established

DHT technologies with modern remote procedure call (RPC)

techniques. We use an extended version of the Chord protocol

as DHT and implemented additional important extensions like

private networks. Our results can be directly integrated into

other domains to provide services via RPC methods, which

are processed in the background within a distributed network.

We begin by explaining related works and highlighting our

contribution. After that we explain our concept and implemen-

tation in Section II and also describe our use-case scenario

and possible attacks along with mitigations. After that, we

demonstrate the performance of the system within different

measurements in Section III. In this context, we will discuss

the simulation of users, the selected hardware setup, as well as

the evaluation of the measured data and the insights gained for

further improvements of our implementation. In Section IV,

1Grond is released as module of Fides and is open source available under
the MIT license: https://gitlab.rlp.net/l.creutz/fides
The replication package for the evaluation of this paper can be found here:
https://gitlab.rlp.net/landleuchten/grond-paper

we summarize the work and describe future improvements to

the implementation.

A. Related Works

In this section we give a short description of the Chord pro-

tocol which serves, in our own implemented version including

some extensions, as the basis for our cyber-physical contract

system Fides [3] and cover further DHT implementations.

Chord [4] is a distributed peer to peer lookup protocol and

accomplishes this by storing hashed keys in a distributed hash

table. The individual nodes are sorted by an unique identifier,

which is their hashed IP address, in ascending order in a ring-

shaped structure in which each node has a pointer to its direct

successor. Consistent hashing, meaning the property that each

key is associated with exactly one node, is achieved by always

storing keys and data tuples at exactly the first node whose ID

is greater than or equal to the hashed key. Efficient searches in

logarithmic time are realized by so called finger tables. These

are routing tables in which each node stores information about

other nodes in the ring.

Thereby, the ith entry of the finger table contains the next

node in the ring that follows the current node with ID n with

a distance of at least (n + 2i−1) mod 2m, where m is the

amount of bits of the used hash function. When searching for

a certain node in the ring, the finger tables can thus be used

to jump from node to node in first large and then ever smaller

steps until the searched node is reached. This is achieved by

always searching for the closest predecessor of the searched

node in the finger tables of the nodes on the path of the

search. The stability of the ring structure is ensured by the

two methods stabilize and fix fingers which are executed by

each node in regular intervals. Stability in this case means

the ability of the individual nodes of the ring to maintain or

restore their correct successor pointers when other nodes fail

or are added. The method stabilize works by asking the direct

successor for its direct predecessor. If this node is between the

requesting node and its direct successor, it is adopted as its

new successor. In addition, the new successor is notified about

its new predecessor so that it can also update its information

accordingly. [4]

The method fix fingers picks a random entry of the finger

table and searches the direct successor node of its index. In



Fig. 1. Example of a Chord ring in the value range 2
3 consisting of the nodes

1, 3 and 7 with their finger tables and their assigned keys. Here int. and start
are the finger table entry’s interval and its respective start, while succ. is the
successor node associated with the entry.

case a new successor is found, the table entry is updated

accordingly. In order to increase the stability in case of node

failures, not only the direct successor is held available, but a

list containing several direct successors. [4]

Fig. 1 shows an example of a Chord ring with m = 3
containing three nodes and their corresponding finger tables.

However, there do exist several different versions of the

specification and implementations of the Chord protocol. In

the work of Pamela Zave [5] in which the author follows a

lightweight modeling approach to verify the correctness of

Chord these different versions are cited.

Apart from Chord, there are of course other peer-to-peer

distributed hash tables. One such would be Kademlia [6], for

example. Here, asynchronous messages are exchanged within

a binary tree structure. The use of a symmetric XOR metric for

routing allows to contact arbitrary nodes within given intervals.

And asynchronous communication also allows parallel routing

requests to be sent to appropriate nodes to prevent timeouts.

As presented in [6], these features make Kademlia both

efficient and robust against node failures. Another very popular

protocol is Pastry [7], which is based on network locality.

Using a scalar proximity metric, each node knows the route

to a certain number of its network topographically nearest

nodes. When routing, it is heuristically assumed that each node

contains in its set of nearest nodes the route to a node that is

closer to the originating node of a message.

Thus, Pastry provides an error-resistant and well-scaling

basis for numerous higher level applications such as PAST

[8] or SCRIBE [9]. There is also Tapestry [10], an API

that uses adaptive algorithms with soft states to implement

a peer to peer overlay network that provides good scalability,

performance and fault tolerance for changes in the network due

to node failures, for example. Efficiency in terms of latency

and throughput is thereby optimized by using the locality of

mobile endpoints for routing.

B. Contribution

Our contributions are novel in the sense of using extensible

RPC methods in combination with a DHT in Python. The

implementation is open source and can be embedded in

further projects. We show reproducible measurements of a

real-world application using the implementations presented

here. Furthermore, we describe general approaches to improve

performance in the context of our experiment, which can also

be applied to other domains utilizing the same technology.

We decided to extend the Chord protocol for our application

in order to use it in the Fides framework. Since we could

not find an implementation of Chord in Python that met our

requirements, we have implemented our own version, which

we will discuss in more detail in Section II.

II. CONCEPT AND IMPLEMENTATION

Below we describe the overall concept of the work and

important aspects of the implementation. For the code, we

refer to the official Fides repository, which includes the Grond

library as an external module.

A. Fides network DHT

Our implementation was developed specifically for the

Fides framework. Within Fides, cyber-physical contracts are

derived from templates and then processed step by step.

These templates and contracts have to be documented in a

(distributed) network. For this purpose Fides uses a distributed

index, which is updated via RPC methods within the network.

The assignment of which network node, which is called a

”full node” inside Fides, manages which template/contract

is performed directly via Grond. The hash values of the

template/contract are assigned to the respective ID of the node

and the RPC requests are then distributed across the network.

B. Extensible remote procedure calls

A fundamental goal of our Chord implementation was ease

of use with generic RPC methods within a wide variety of

application domains. The basic approach is that the DHT

functions are available in the background and the application-

specific RPC methods only have to check whether the ad-

dressed node is responsible for the request. We use gRPC2,

the RPC framework from Google, for this purpose. Fig. 2

shows the relationship between the class Grond.Node, which

implements the DHT functions, and the derived class Appli-

cation.Node, which is extended by the RPC services (here:

gRPC.applicationServicer). In order to offer such a service

via a DHT, the RPC methods only have to be defined, imple-

mented and added to Grond. The distribution of the requests is

usually done via a hash, whose distance is then determined to

the IDs of the nodes in the network. Accordingly, a node only

has to check whether it is responsible for the current request

or whether the request is forwarded. The correct location for

the request is automatically determined by Grond.

C. Implementation

We have implemented Chord largely analogous to the

specifications given in [4]. In addition, we have made some

adjustments which we will explain in the following.

2https://grpc.io/ - Accessed 15.09.2022



Fig. 2. Relationship between Grond and the application-specific RPC meth-
ods.

We have optimized connecting to other nodes by keeping

stubs of once established connections for later reuse. This is

advantageous because in our application it can be assumed that

connections are reused multiple times. Whenever a connection

should be established, we check whether a stub object already

exists for the node ID to be connected and use it if so, or

create a new one and save it for later reuse.

Additionally, in fix fingers we do not update a random entry,

instead we incrementally update one entry of the table per

iteration, so that each entry is guaranteed to be kept up to

date after a certain time.

We have also implemented two mechanisms to increase the

security of the network. The first security enhancement we

introduced is the check method and a network name string.

Every node states to be inside a network that is defined by

an arbitrary string. We do not communicate that network

parameter inside the ID but use it to check the ID of other

nodes. We calculate an ID of a node as follows:

ID = SHA256(network ⊕ ip⊕ port) (1)

⊕ is the concatenation of the elements. Inside RPC calls nodes

report their id, ip, port and in private networks a certificate.

Therefore it is more difficult to join a network: the network

name must also be present and part of the local ID in order

to join as a full node.

The second is the use of certificates which allow the creation

of private networks that can only be joined if the appropriate

certificate is available. The certificate is checked in the higher

level check method of Fides and can be applied in the same

way to other application scenarios. This shows how easily our

implementation can be extended to be specific context. The

certificate string is optional and is submitted with the node

information along with the ID, IP, and port on RPCs. The

check method is called on every incoming RPC from another

node to verify that the node has a correct ID, is reachable on

the IP and port number it provided via RPC and is part of the

same network. For this reason, we check the ID of the node as

described before and additionally make sure that the node is

reachable on the specified IP:port combination. For use with

Fides we have also implemented a responsible method to be

able to assign the RPC call to the correct node. This method

returns for a searched key the node in the network that is

associated with this key. The find successor method is used

for this purpose. In our implementation, we run stabilize and

fix fingers as threads. When choosing a thread interval, we

have to balance between performance and stability. For both

threads, we currently use 1 second as a wait period.

D. Attack vectors and mitigations

Below we present some known attacks on DHT and describe

possible countermeasures. Generally speaking, most attacks

involve costs/resources that are disproportionate to the bene-

fits. This depends heavily on the specific application and the

implementation (the use of the DHT), but fundamentally it is

difficult for an attacking party to predict where in the network

data of a particular user will be stored.

1) Sybil attack: The disruption of a network by creating

many false identities is known as a Sybil attack [11]. Since it

is not possible in a completely distributed system (without a

central instance or other restrictions) to ensure that an identity

within the network belongs to exactly one physical party an

attacker might be able to create multiple identities [12].

Within the Fides protocol, a Sybil attack could be implemented

using the port parameter of the ID of network nodes, since

it can be arbitrary selectable within the TCP port range. To

counter this, an application can specify the particular port,

for example inside a configuration file, and extend the check

method of the implementation accordingly to ensure that port

is used. This significantly reduces the attack vector of a Sybil

attack, since real IP addresses are now required to create

multiple identities on the network, rendering the attack more

expensive. An extended check method is easy to implement

and for example used inside Fides to establish private full node

networks.

2) Eclipse attack: An Eclipse attack [12] attempts to isolate

individual parts of the network (possibly individual nodes).

Accordingly, the attacking party places itself in the network

in such a way that the node to be attacked is fully disrupted

in its routing and its queries are directed to nodes managed

by the attacking party. Therefore, the exact course and effort

of an Eclipse attack depends on the routing protocol used.

Eclipse attacks have for example already been demonstrated

for Bitcoin [13] and Ethereum [14]. For the used Chord

protocol, Eclipse attacks are immediately more difficult to

perform due to the calculation of the ID of network nodes,

but not impossible [12]. An attacking party thus has to use

more resources to generate IDs with real IP addresses, in order

to isolate the node to be attacked. The vulnerability to Sybil



attacks through the port element of the node ID does simplify

such an attack.

3) Routing attack: An attack on storage/routing, involves

incorrect behavior of nodes within the network [12]. Due to

the openness of the software and (in public networks) the

unrestricted participation in a network, such attacks cannot

be prevented. An attacking party could therefore deliberately

return false information to clients. If one limits the attack

possibilities of Sybil or Eclipse attacks, a routing attack

becomes equivalently more difficult to carry out, since it is

not controllable to which parts of the network the attacking

party can make false statements. A countermeasure would be

to challenge nodes and observe whether the challenged node

behaves correctly. If it loses the challenge, the node can be

excluded accordingly.

4) Application-dependent attacks: In addition to the known

attack vectors on distributed hash tables, application-specific

attack vectors may occur when using our implementation.

Using Fides [3] as an example, if a node fails, it would

be possible to republish an incorrect state of a contract.

Accordingly, such a failure must be detected by the other party

to the contract and not cause errors there. In general, this

type of attack must be evaluated and prevented individually

depending on the use case.

III. EXPERIMENT AND SIMULATION

In the following we introduce our experiment. We explain

how we simulate users and describe our tests and their results.

Furthermore, we evaluate the results and describe possible

changes of the implementation to improve the system in

general.

A. Client simulation

The system can be simulated with a configurable Python

script, which is part of the replication package of the paper.

The following parameters can be adjusted:

• num clients: Number of clients to simulate in parallel. A

separate Fides instance is created for each client.

• test num iterations: Iterations of the measurement.

• test num of contracts: Number of contracts to be created

per iteration.

• test iteration sleep: Waiting time between iterations.

However, the contracts may not have been finished yet,

as those are automated in the background.

The simulation was designed in such a way that the results

should provide ”real” values and are not designed to overload

the node to be measured. Accordingly, background updates of

the respective instances should take place periodically, as well

as the processing of contracts. The simulation script performs

the following actions:

1) Create callback Python scripts which will be used by all

instances to automate templates and contracts.

2) Create a separate Fides instance per client. Here the

node to be measured is added as endpoint and the

respective instance is configured. For the background

update interval, a random value in the range of 1-60

TABLE I
SIMULATION RESULTS OF 2 CLIENTS, 5 ITERATIONS WITH A WAITING

PERIOD OF 120S

# Contracts CPU user % CPU wait % NET Rx KB NET Tx KB
avg max avg max avg max avg max

5 3.7 18 1.1 15 9.6 339 38.8 504

10 3.9 21 1.1 14 12.9 294 38.2 521

20 4.9 26 1.9 18 19.6 414 61.1 485

40 5.4 22 2.5 20 27.3 373 87.6 613

80 5.4 24 2.8 20 31.6 461 85.5 595

160 6.8 22 4.1 21 38.6 453 112.9 750

TABLE II
SIMULATION RESULTS OF 80 CONTRACTS WITH 2, 4 AND 8 CLIENTS, 5

ITERATIONS WITH A WAITING PERIOD OF 120S

# Clients CPU user % CPU wait % NET Rx KB NET Tx KB
avg max avg max avg max avg max

2 5.4 24 2.8 20 31.6 461 85.5 595

4 6.4 26 3.4 19 33.3 552 100.8 666

8 4.3 20 1.5 14 15.9 260 50.6 623

seconds is chosen per instance, so that the respective

background updates are performed at different times.

Furthermore, an account is created for the respective

instance and the network is started.

3) Create a template with the same contents for all clients.

4) Store the elements of the instance for easy access (ID,

path to the instance, private key of the account, hash of

the template).

5) Generate the automation for the created template using

the hooks module of Fides and store it in the instance

of the client.

6) Start the hook for the template.

7) Perform a single test inside a nested loop (itera-

tions/number of contracts):

a) Determine two different clients c1, c2. Here c1

creates the contract, c2 manages the template.

b) Retrieve the template from the network.

c) Load the account.

d) Create and finalize the contract.

e) Create and launch the hook for the created contract.

f) Publish the contract.

Both template and contract hook check every two seconds if

the state has changed locally and react to this state change

if necessary. When confirming tasks in the contract, different

amounts of data are randomly generated by the two parties to

create different loads on the full nodes.

B. Experimental setup

To measure the resource requirements of our implementa-

tion, we built a hardware setup specifically for the experiment.

For this purpose, we connected four Raspberry Pi Model 3 B

Rev 1.2 and a measuring laptop via an Ethernet switch. Each

Raspberry Pi operates a full node of a Fides test network.

We use Ubuntu 22.04.1 LTS3, Python in version 3.10.4 and

Fides in version 0.5.1. On the measuring computer, the script

3https://ubuntu.com - Accessed 19.09.2022



Fig. 3. CPU usage for 80 Contract on 2 clients

Fig. 4. Network usage for 80 Contract on 2 clients

described in III-A is executed to simulate Fides clients and

thus generate load for the network. The switch is a Netgear

Fast Ethernet Switch Model FS108 with a throughput of

10/100Mbps.

When measuring resource consumption, we analyzed the

user’s CPU usage, CPU wait for I/O operations, incoming and

outgoing network traffic, and RAM usage. We measured differ-

ent scenarios by varying the number of clients and contracts

in order to be able to make well-founded statements about

the resource consumption of our implementation. For two

clients, we started with 5 contracts and doubled the number

for each measurement up to 160 contracts. We repeated the

same measurements for 4 clients. Furthermore, we measured

80 contracts with 8 clients to compare the effects of different

numbers of clients and to show a situation where errors occur.

C. Results

The results of the measurements with 2 clients can be

found in Table I. The RAM usage is not shown, since it

remained constant at 5.4% for all measurements. The tests with

the 2 simulated users show that the CPU load at maximum

is very similar in all tests. In addition, an increase in the

average load can be seen with the increase in contracts, which

is still very low at 6.8% for the hardware used with 160

contracts. The increase in CPU wait indicates write operations

Fig. 5. CPU usage for 80 Contract on 8 clients

Fig. 6. Network usage for 80 Contract on 8 clients

in the management of the distributed index, which becomes

correspondingly more as the number of objects increases. The

incoming network data highlights the increase in the amount

of data per test, while the outgoing network traffic shows the

forwarding of requests and their responses in the network.

Table II contains the results showing the resource consump-

tion at 80 contracts for 2, 4 and 8 clients in comparison.

In addition, we have identified a load with 8 clients and 80

contracts at which errors start to occur in the Fides network. To

show the impact of errors on performance, we have compared

this measurement to a measurement with 2 clients and 80

contracts without errors. The CPU usage plot for 2 clients and

80 contracts can be found in Fig. 3 and the network traffic

plot in Fig. 4. For 8 clients and 80 contracts CPU usage is

shown in Fig. 5 and network traffic in Fig. 6. Looking at the

CPU utilization in Fig 5, we see obvious drops and no even

utilization as in Fig 3. The reduction in CPU utilization is

due to piling up RPC requests that cannot be processed fast

enough. This is even more noticeable on the network, where

less data is received and sent over the test period than in the

previous tests.

D. Evaluation

The measurements showed that our implementations can be

used to easily build distributed systems even on lightweight

hardware. The performance of such a network is strongly



related to the hardware used. Accordingly, restrictions may

have to be imposed on the application layer so that the network

cannot be overwhelmed. Since these restrictions would have

to be forced by the network nodes and generally do not

stop an attacking party, failures can be observed in some

of our measurements. In our experiment with 80 contracts

on 8 clients, the number and frequency of requests was

simply too much for the low-resource hardware. The gRPC

server of the DHT uses the default value for the number of

threads (within a pool) to process the requests. In the Python

version used, this results in ({number of CPUs} + 4)4, which

means that 8 threads are available for processing the requests

with the hardware used. Furthermore, any number of RPC

requests can be directed to the server (configuration element

maximum concurrent rpcs) without the server reporting back

that its resources are exhausted5. This means that the number

of incoming connections by users was already equal to the

maximum of threads to process the RPC requests. Further-

more, the communication between the network nodes must

be considered, which is additionally sent and received by the

measured node. If too many requests accumulate, this can

lead to delays. Especially the selected timeout of 1 second

can not be met during the communication between network

nodes, which removes the overloaded node from the ring

from the point of view of the other nodes. One effective

approach to preventing excessive load is to operate the network

nodes behind load balancers, which ensure that the number

and frequency of requests can be handled by the hardware.

Furthermore, prioritization between users and other network

nodes is easier to perform provided that this information is

known in advance. One solution within the application would

be to use a variable timeout for RPC requests between network

nodes. In case of a high number of requests by users, this

timeout can be increased accordingly, briefly worsening the

routing within the DHT (in case of fluctuations), but improving

the general stability of the DHT. In the future, we plan

to test different approaches and configurations to make our

implementation more robust to the limitations addressed.

IV. CONCLUSION AND FUTURE WORK

The paper presented Grond an implementation of Chord

that is extendable with application-specific RPC methods. We

then demonstrated how it is used in a real world application

context inside the software Fides. Furthermore we measured

the performance of our implementation of the DHT by sim-

ulating different scenarios on a hardware setup consisting

of Raspberry Pis which we used as nodes in our testing

network. Thereby we demonstrated that Grond works stable

and reliable even on lightweight hardware. In the future, we

want to continue to improve the implementation and continue

4https://docs.python.org/3/library/concurrent.futures.html#concurrent.
futures.ThreadPoolExecutor - Accessed 19.09.2022

5https://grpc.github.io/grpc/python/grpc.html#grpc.server - Accessed
19.09.2022

to observe it in real-world applications like Fides to gain

insights on how the software is being used. In particular, we

want to investigate the points raised in the evaluation of the

measurements, for example, to find a more efficient balance

between robust routing and fewer failures during overloads

through variable timeouts.
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